3Dプリントされた肺モデルでエアロゾルの沈着を研究 (3D-printed lung model helps researchers study aerosol deposition in the lungs)

ad

2025-02-19 デラウェア大学

デラウェア大学のキャサリン・フローメン准教授とそのチームは、3Dプリント技術を用いて、現実的な呼吸動作を再現できる適応型肺モデルを開発しました。このモデルは、気道内のエアロゾル(吸入微粒子)の挙動を詳細に研究するために設計されており、吸入薬の効果的な投与や環境中の有害粒子の肺内沈着を評価するのに役立ちます。従来の肺モデルは、肺の複雑な構造や呼吸の動的な動きを完全には再現できませんでしたが、今回のモデルは3Dプリントによる格子構造を採用し、肺全体の体積と表面積を忠実に模倣しています。これにより、吸入薬の投与量や環境中の有害物質の肺内分布をより正確に予測することが可能となり、個々の患者の呼吸状態や疾患特性に応じたパーソナライズされた治療の開発が期待されています。さらに、このモデルは、吸入薬の臨床試験における失敗要因の特定や、環境中の有害物質の肺内沈着メカニズムの解明にも貢献するとされています。研究チームは、この設計と手法をオープンソース形式で公開し、他の研究者や製薬開発者との協力を促進しています。

<関連情報>

呼吸依存性局所エアロゾル沈着を評価するための実験的全容積気道近似 Experimental full-volume airway approximation for assessing breath-dependent regional aerosol deposition

Ian R. Woodward ∙ Yinkui Yu ∙ Catherine A. Fromen
Device  Published:August 21, 2024
DOI:https://doi.org/10.1016/j.device.2024.100514

Graphical abstract

3Dプリントされた肺モデルでエアロゾルの沈着を研究 (3D-printed lung model helps researchers study aerosol deposition in the lungs)

The bigger picture

Inhalable medicine depends on delivering aerosols to the correct location in the lungs at the correct dosage. But many factors complicate effective delivery, including drug formulation, delivery device, and patient anatomy and physiology. To help understand how inhaled aerosols deposit in the lungs, we created the TIDAL airway approximation system to serve as an adaptable model for measuring spatial aerosol deposition in the airways, which can test the administration of aerosol therapeutics under various combinations of breathing conditions, formulations, and device parameters. The modular and scalable nature of the system can help in the study of the effects of diseases and drugs on people with different physiologies. The TIDAL system is also readily extensible, enabling future physiological features, as well as integrated testing of organ-on-a-chip-like systems.

Highlights

•Full-volume 3D-printed lung model with cyclical breathing capability
•Modular design pipeline combines patients’ upper airways and approximated deep airways
•Tunable breathing by interactive graphical user interface and real-time processing
•Regional aerosol deposition quantified and mapped to clinical standards

Summary

Modeling aerosol dynamics in the airways is challenging, and most modern personalized in vitro tools consider only a single inhalation maneuver through less than 10% of the total lung volume. Here, we present an in vitro modeling pipeline to produce a device that preserves patient-specific upper airways while approximating deeper airways, capable of achieving total lung volumes over 7 L. The modular system, called total inhaled deposition in an actuated lung (TIDAL), includes tunable inhalation and exhalation breathing capabilities with resting flow rates up to 30 L/min. We show that the TIDAL system is easily coupled with industrially and clinically relevant devices for aerosol therapeutics. Using a vibrating mesh nebulizer, we report central-to-peripheral (C:P) aerosol deposition measurements aligned with both in vivo and in silico benchmarks. These findings underscore the effectiveness of the TIDAL model in predicting airway deposition dynamics for inhalable therapeutics.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました