地球規模の急激な寒冷化が酵素の進化を促進~40億年に渡る生物と地球環境の共進化の謎に迫る~

ad

20025-03-10 早稲田大学

早稲田大学人間科学学術院の赤沼哲史教授、八木創太講師らの研究グループは、好熱性の祖先酵素から常温性の大腸菌酵素への進化過程を解明するため、11段階の中間祖先酵素を再現し、その活性変化を解析しました。その結果、約21~25億年前に低温での触媒活性が大きく向上したことが判明しました。当時、地球は温室効果ガスの減少により氷河期に突入しており、この急激な寒冷化が酵素の低温適応進化を促した可能性があります。この研究は、気候変動が生命の進化に与える影響を示す重要な証拠であり、地球史と生物進化の関係を理解する上で新たな知見を提供します。また、酵素の温度適応メカニズムの詳細な理解は、エネルギー効率の高い触媒反応や環境負荷の少ない工業プロセスの開発にも寄与すると期待されています。本研究成果は、2025年2月19日に国際学術誌『Protein Science』にオンライン掲載されました。

<関連情報>

祖先の塩基配列再構築から見た酵素の低温適応に関する洞察 Insights into the low-temperature adaptation of an enzyme as studied through ancestral sequence reconstruction

Shuang Cui, Subrata Dasgupta, Sota Yagi, Madoka Kimura, Ryutaro Furukawa, Shunsuke Tagami, Satoshi Akanuma
Protein Science  Published: 19 February 2025
DOI:https://doi.org/10.1002/pro.70071

地球規模の急激な寒冷化が酵素の進化を促進~40億年に渡る生物と地球環境の共進化の謎に迫る~

Abstract

For billions of years, enzymes have evolved in response to the changing environments in which their host organisms lived. Various lines of evidence suggest the earliest primitive organisms inhabited high-temperature environments and possessed enzymes adapted to such conditions. Consequently, extant mesophilic and psychrophilic enzymes are believed to have adapted to lower temperatures during the evolutionary process. Herein, we analyzed this low-temperature adaptation using ancestral sequence reconstruction. Previously, we generated the phylogenetic tree of 3-isopropylmalate dehydrogenases (IPMDHs) and reconstructed the sequence of the last bacterial common ancestor. The corresponding ancestral enzyme displayed high thermostability and catalytic activity at elevated temperatures but moderate activity at low temperatures (Furukawa et al., Sci. Rep., 2020;10:15493). Here, to identify amino acid residues that are responsible for the low-temperature adaptation, we reconstructed and characterized all 11 evolutionary intermediates that sequentially connect the last bacterial common ancestor with extant mesophilic IPMDH from Escherichia coli. A remarkable change in catalytic properties, from those suited for high reaction temperatures to those adapted for low temperatures, occurred between two consecutive evolutionary intermediates. Using a combination of sequence comparisons between ancestral proteins and site-directed mutagenesis analyses, three key amino acid substitutions were identified that enhance low-temperature catalytic activity. Intriguingly, amino acid substitutions that had the most significant impact on activity at low temperatures displayed no discernable effect on thermostability. However, these substitutions markedly reduced the activation energy for catalysis, thereby improving low-temperature activity. The results were further investigated by molecular dynamics simulations of the predicted structures of the ancestral enzymes. Our findings exemplify how ancestral sequence reconstruction can identify residues crucial for adaptation to low temperatures.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました