低温プラズマ技術で抗生物質分解のナノザイム革新を促進(Low-temperature Plasma Technique Boosts Nanozyme Innovation for Antibiotic Degradation)

ad

2025-04-28 中国科学院(CAS)

低温プラズマ技術で抗生物質分解のナノザイム革新を促進(Low-temperature Plasma Technique Boosts Nanozyme Innovation for Antibiotic Degradation)Schematic diagram of the process of preparing CoNi-MOF by LTP in the form of DBD and using the laccase-like activity of CoNi-MOF to treat tetracycline in wastewater. (Image by LIU Chao)

中国科学院合肥物质科学研究院の黄清教授率いる研究チームは、低温プラズマ(LTP)技術を用いて、ラッカーゼ様活性を持つ新しいCoNi-MOFナノザイムを開発しました。このナノザイムは、天然ラッカーゼの活性部位を模倣し、テトラサイクリン系抗生物質の分解に高い効果を示しました。さらに、さまざまな環境条件下での耐性と安定性が向上し、生物毒性も大幅に低減されました。研究チームは、このナノザイムを曝気装置と組み合わせることで、抗生物質汚染の効率的な除去を実現しました。この研究は、環境浄化のための高性能ナノザイムの合成における新たなアプローチを提供し、抗生物質汚染の緩和に向けた持続可能で環境に優しい戦略を示しています。

<関連情報>

誘電体バリア放電プラズマにより調製したCoNi-MOFラッカーゼ様ナノザイムによる抗生物質汚染処理 CoNi-MOF laccase-like nanozymes prepared by dielectric barrier discharge plasma for treatment of antibiotic pollution

Chao Liu, Yi Cao, Qi Xia, Amil Aligayev, Qing Huang

Journal of Hazardous Materials  Available online: 14 April 2025

DOI:https://doi.org/10.1016/j.jhazmat.2025.138282

Highlights

  • Low-temperature plasma (LTP) was effective in preparing bimetallic CoNi-MOF nanozymes.
  • DBD-LTP-prepared CoNi-MOF nanozymes exhibited excellent laccase-like activity.
  • Oxygen vacancies in CoNi-MOF improved the catalytic activity significantly.
  • CoNi-MOF nanozymes could catalyze the degradation of tetracycline (TC) efficiently.
  • Aeration implement further increased dissolved oxygen to enhance TC degradation.

Abstract

Laccase is a natural green catalyst and utilized in pollution treatment. Nevertheless, its practical application is constrained by limitations including high cost, poor stability, and difficulties in recovery. Herein, with inspiration from catalytic mechanism of natural laccase, we designed and prepared a bimetallic metal-organic framework, namely, CoNi-MOF, using low-temperature plasma (LTP) technology. We employed dielectric barrier discharge (DBD) plasma to prepare CoNi-MOF, and by precisely modulating the N2/O2 gas ratio, we could modulate the distribution concentration of oxygen vacancies in CoNi-MOF. Experimental investigations and density functional theory (DFT) calculations elucidated that the critical role of the oxygen vacancies in enhancing the laccase-like activity, which promoted the activation of molecular oxygen (O2) for generation of reactive oxygen species (ROS). Compared to natural laccase, CoNi-MOF exhibited superior catalytic performance in the degradation of antibiotic tetracycline (TC), along with enhanced resistance to harsh environmental conditions, improved stability, and low biotoxicity. Notably, aeration increased the dissolved oxygen (DO) content, further improving the TC degradation efficiency. As such, this study not only proposes a facile and efficient low-temperature plasma technology for synthesizing high-performance laccase-like nanozymes but also provides a promising and environmentally friendly strategy for the remediation of antibiotic contamination in the environment.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました