折り紙ロボットで非侵襲的薬剤送達を実現(How Origami Robots with Magnetic Muscles Could Make Medicine Delivery Less Invasive and More Effective)

ad

2025-10-17 ノースカロライナ州立大学(NCState)

折り紙ロボットで非侵襲的薬剤送達を実現(How Origami Robots with Magnetic Muscles Could Make Medicine Delivery Less Invasive and More Effective)
A crawling robot created with the Miura-Ori origami pattern. The dark areas are covered in a thin magnetic rubber film which allows the robot to move.

Web要約 の発言:
ノースカロライナ州立大学の研究チームは、折り紙構造と磁性材料を組み合わせた「磁気筋ロボット」を開発した。ミウラ折り構造を持つ柔軟な素材の表面に磁性粒子を含む薄膜を3Dプリントし、外部磁場によって折り畳み・展開・移動を自在に制御できる。この技術により、体内で展開して薬を放出する低侵襲な医薬品送達システムの実現が期待される。実験では、模擬胃内で磁場制御によりロボットを目標部位に誘導し、展開・固定・薬物放出を成功させた。また、砂地など不整地を移動できる匍匐型も開発され、障害物を乗り越える性能を示した。将来的には、生体適合性や磁場制御の安全性を確保しつつ、消化器系疾患の治療などへの応用が見込まれている。

<関連情報>

3Dプリントソフト磁気アクティブ折り紙アクチュエータ 3D-Printed Soft Magnetoactive Origami Actuators

Sen Zhang, Yuan Li, Zimeng Li, Nabil Chedid, Peiqi Zhang, Ke Cheng, Xiaomeng Fang
Advanced Functional Materials  Published: 12 September 2025
DOI:https://doi.org/10.1002/adfm.202516404

Abstract

Soft magnetoactive material-driven origami actuators, controlled wirelessly by external magnetic fields, combine the folding capabilities of origami with the compliance of soft materials. However, research in optimizing magnet placement and field direction for enhanced actuation remains limited. This study presents 3D printed soft magnetoactive materials integrated into various origami structures with different film placements, enabling applications in non-invasive drug delivery and crawling robotics. The printing ink, containing up to 75 wt.% ferromagnetic particles and UV-curable elastomers, is processed using a customized 3D printing system with dual curing mechanism-UV light and heated collecting platform, allowing instantaneous consolidation of complex 3D geometries with considerable height and thickness. The resulting films exhibit strong magnetic response, flexibility, and programmable polarity, supporting untethered actuation with substantial force. Two origami actuators are developed: a non-invasive drug delivery targeting stomach ulcer treatment, demonstrating a high folding-to-deployment ratio, precise guidance and secure fixation to the ulcer site, good biocompatibility; and a robotic crawler capable of traversing obstacles up to 7 mm high with speed adjustable via magnetic field strength and frequency, and adapting to diverse terrains, including sand. This work highlights the potential of combining soft magnetoactive materials and origami for scalable, wireless, and multifunctional actuator systems.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました