生きた細胞と情報を直接交換できる人工ニューロンを初めて開発 (UMass Engineers Create First Artificial Neurons That Could Directly Communicate With Living Cells)

ad

2025-09-30 アメリカ合衆国・マサチューセッツ大学アマースト校

UMass Amherst の研究チームは、細菌が生み出す「たんぱく質ナノワイヤ」を利用し、生体ニューロンと同じ低電圧(0.1ボルト)で作動し、直接通信できる世界初の人工ニューロンを開発した。ナノワイヤにより、生体と近い環境でイオン移動を用いた電気的サイクル(統合・発火・再分極)を再現し、従来型人工ニューロンより低エネルギーで、生きた心筋細胞とのリアルタイム接続も達成した。これにより、生体と電子機器をシームレスにつなぐバイオエレクトロニクスや、脳型計算を行うニューロモルフィック技術の発展が期待され、将来の医療デバイスや高効率計算機の基盤技術として大きな可能性を示している。

生きた細胞と情報を直接交換できる人工ニューロンを初めて開発 (UMass Engineers Create First Artificial Neurons That Could Directly Communicate With Living Cells)
Fu and his colleagues have built the first artificial neurons that can interface directly with living ones. Credit: Jun Yao.

<関連情報>

生物学的価値に包括的に一致する機能パラメータを持つ人工ニューロンの構築 Constructing artificial neurons with functional parameters comprehensively matching biological values

Shuai Fu,Hongyan Gao,Siqi Wang,Xiaoyu Wang,Trevor Woodard,Zhien Wang,Jing Kong,Derek R. Lovley & Jun Yao
Nature Communications  Published:29 September 2025
DOI:https://doi.org/10.1038/s41467-025-63640-7

Abstract

The efficient signal processing in biosystems is largely attributed to the powerful constituent unit of a neuron, which encodes and decodes spatiotemporal information using spiking action potentials of ultralow amplitude and energy. Constructing devices that can emulate neuronal functions is thus considered a promising step toward advancing neuromorphic electronics and enhancing signal flow in bioelectronic interfaces. However, existent artificial neurons often have functional parameters that are distinctly mismatched with their biological counterparts, including signal amplitude and energy levels that are typically an order of magnitude larger. Here, we demonstrate artificial neurons that not only closely emulate biological neurons in functions but also match their parameters in key aspects such as signal amplitude, spiking energy, temporal features, and frequency response. Moreover, these artificial neurons can be modulated by extracellular chemical species in a manner consistent with neuromodulation in biological neurons. We further show that an artificial neuron can connect to a biological cell to process cellular signals in real-time and interpret cell states. These results advance the potential for constructing bio-emulated electronics to improve bioelectronic interface and neuromorphic integration.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました