ハイドロゲル-エラストマー導電ナノ膜に基づく新しいバイオエレクトロニクスデバイス(New Bioelectronics Device Based on Hydrogel-Elastomer Conductive Nanomembranes)

ad

2025-12-10 韓国基礎科学研究院(IBS)

基礎科学研究院(IBS)CNIR と成均館大学の研究チームは、生体組織と無理なく一体化できる新しい超薄型バイオエレクトロニクス材料 THIN(Transformable and Imperceptible Hydrogel-Elastomer Ionic-Electronic Nanomembrane) を開発した。膜厚350nmの二層ナノ膜は乾燥時は硬く加工しやすい一方、水分に触れると急激に軟化し、心臓や脳のような柔らかく曲面の多い器官にも自然に自己接着する。基盤となる組織接着性ハイドロゲル Alg-CA と高性能半導体エラストマー P(g2T2-Se) を組み合わせ、湿潤時には機械的硬さが100万分の1以下に低下、半径5 µm以下の曲率にも密着できる。THIN上に構築された有機電気化学トランジスタ(OECT)は高いイオン―電子結合効率を示し、動く心臓・筋肉・脳表から安定したEGM・EMG・ECoG記録が可能で、4週間以上の生体適合性も確認された。接着剤や支持基板を必要とせず、信号増幅をその場で行えるため、将来の脳–機械インターフェース、心臓モニタリング、神経補綴、ウェアラブル・インプラント医療機器の新基盤になると期待される。

ハイドロゲル-エラストマー導電ナノ膜に基づく新しいバイオエレクトロニクスデバイス(New Bioelectronics Device Based on Hydrogel-Elastomer Conductive Nanomembranes)Figure 1. Mechanically transformable and imperceptible hydrogel-elastomer adhesive bilayer (THIN) transistor based on an ion-electron conducting nanomembrane for bio-signal amplification
The IBS Center for Neuroscience Imaging has developed a free-standing ion-electron conducting nanomembrane (THIN) that retains structural integrity without external support. When implemented as an organic electrochemical transistor (OECT), the THIN device adapts conformally to curved biological tissues by absorbing bodily fluids and enables real-time on-site amplification of subtle bio-signals for precise in vivo monitoring.

<関連情報>

ソフトバイオエレクトロニクスのためのハイドロゲル-エラストマーベースの導電性ナノ膜 Hydrogel–elastomer-based conductive nanomembranes for soft bioelectronics

Hyunjin Jung,Daeyeon Lee,Kyoungryong Kim,Heewon Choi,Soojung An,Youngwan Lee,Sungjun Lee,Jiyong Yoon,Duhwan Seong,Yewon Kim,Jaepyo Jang,Subin Jin,Sumin Kim,Jeungeun Kum,Hyeok Kim,Sang Min Won,Hyungmin Kim,Seung-Pyo Lee,Hyung-Seop Han,Mikyung Shin,BongSoo Kim & Donghee Son
Nature Nanotechnology  Published:10 December 2025
DOI:https://doi.org/10.1038/s41565-025-02031-x

Abstract

Conformal integration of electronics with soft, irregular organ topologies remains challenging, as tissue-like platforms with bulky dimensions ranging from a few millimetres to several hundred micrometres result in incomplete signal acquisition and chronic tissue compression. Although ultrathin nanoscale devices have recently been developed to address these challenges, they involve complex and delicate handling processes that limit their practical use and compromise their intrinsic performance. Here we present the development of a transformable and imperceptible hydrogel–elastomer adhesive bilayer based on ionic–electronic conductive nanomembranes (THIN) with a thickness of 350 nm. This approach leverages the amphiphilic properties and the combination of a hydrophilic tissue-adhesive hydrogel and a hydrophobic semiconducting elastomer. Dynamic bonding interactions at a heterogeneous interface, formed through a spin-coating process using orthogonal solvents, facilitate full compatibility with microfabrication. THIN exhibits an instantaneous rigid-to-soft phase transformation, transitioning from a hardness of 1.35 to 0.035 GPa and a stiffness of 0.16 to 9.08 × 10-5 GPa μm4, enabling facile handling when dried. On hydration, THIN achieves complete conformal contact with diverse surfaces, including those with low bending radii, along with rapid spontaneous adhesiveness. To demonstrate the unique electrical and mechanical characteristics, THIN was integrated into the active channel of an organic electrochemical transistor with a high µC* (µ, charge-carrier mobility; C*, volumetric capacitance). The resulting THIN-OECT exhibited an exceptional strain-insensitive ion–electron conduction performance, facilitating imperceptible tissue interfacing and precise biosignal monitoring through transformable phase changes.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました