乳がんのリスク予測は複数のマンモグラフィを解析することで改善される(Analyzing multiple mammograms improves breast cancer risk prediction)

ad

2024-12-05 ワシントン大学セントルイス校

ワシントン大学セントルイス校の研究者らは、複数のマンモグラム画像を解析することで、乳がんリスク予測の精度が向上することを明らかにしました。従来のリスク評価モデルは、年齢や家族歴などの臨床的要因に基づいていましたが、マンモグラム画像から得られる乳房密度や組織パターンなどの情報を組み合わせることで、より正確なリスク評価が可能となります。特に、時間経過に伴う乳房組織の変化を追跡することで、個々の患者のリスクプロファイルを詳細に把握でき、早期発見や個別化治療の計画に役立つと期待されています。この研究は、乳がん検診の精度向上と患者ケアの改善に大きく寄与する可能性があります。

<関連情報>

繰り返しマンモグラフィを用いた動的5年乳がんリスクモデルの開発と検証 Development and Validation of Dynamic 5-Year Breast Cancer Risk Model Using Repeated Mammograms

Shu Jiang, PhD, Debbie L. Bennett, MD, Bernard A. Rosner, PhD, Rulla M. Tamimi, ScD, and Graham A. Colditz, MD, DrPH
JCO Clinical Cancer Informatics  Published:December 05, 2024
DOI:https://doi.org/10.1200/CCI-24-00200

乳がんのリスク予測は複数のマンモグラフィを解析することで改善される(Analyzing multiple mammograms improves breast cancer risk prediction)

Abstract

Purpose
Current image-based long-term risk prediction models do not fully use previous screening mammogram images. Dynamic prediction models have not been investigated for use in routine care.

Methods
We analyzed a prospective WashU clinic-based cohort of 10,099 cancer-free women at entry (between November 3, 2008 and February 2012). Follow-up through 2020 identified 478 pathology-confirmed breast cancers (BCs). The cohort included 27% Black women. An external validation cohort (Emory) included 18,360 women screened from 2013, followed through 2020. This included 42% Black women and 332 pathology-confirmed BC excluding those diagnosed within 6 months of screening. We trained a dynamic model using repeated screening mammograms at WashU to predict 5-year risk. This opportunistic screening service presented a range of mammogram images for each woman. We applied the model to the external validation data to evaluate discrimination performance (AUC) and calibrated to US SEER.

Results
Using 3 years of previous mammogram images available at the current screening visit, we obtained a 5-year AUC of 0.80 (95% CI, 0.78 to 0.83) in the external validation. This represents a significant improvement over the current visit mammogram AUC 0.74 (95% CI, 0.71 to 0.77; P < .01) in the same women. When calibrated, a risk ratio of 21.1 was observed comparing high (>4%) to very low (<0.3%) 5-year risk. The dynamic model classified 16% of the cohort as high risk among whom 61% of all BCs were diagnosed. The dynamic model performed comparably in Black and White women.

Conclusion
Adding previous screening mammogram images improves 5-year BC risk prediction beyond static models. It can identify women at high risk who might benefit from supplemental screening or risk-reduction strategies.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました