ゲノム研究のための新しい暗号技術フレームワーク(A New Cryptography Framework for Secure Genomic Studies)

ad

2025-03-03 スイス連邦工科大学ローザンヌ校(EPFL)

スイス連邦工科大学ローザンヌ校(EPFL)は、MITやイェール大学と協力し、ゲノム研究の安全なデータ共有を可能にする暗号技術「SF-GWAS」を開発しました。この手法は、データを分散したまま解析できるフェデレーテッドアプローチを採用し、プライバシーを保護しつつ効率的な計算を実現。イギリスのバイオバンクなどの大規模データで実証され、欧州の病院にも導入が進んでいます。

<関連情報>

ゲノムワイド関連研究のためのバイオバンクスケールデータセットの安全性とフェデレーション Secure and federated genome-wide association studies for biobank-scale datasets

Hyunghoon Cho,David Froelicher,Jeffrey Chen,Manaswitha Edupalli,Apostolos Pyrgelis,Juan R. Troncoso-Pastoriza,Jean-Pierre Hubaux & Bonnie Berger
Nature Genetics  Published:24 February 2025
DOI:https://doi.org/10.1038/s41588-025-02109-1

ゲノム研究のための新しい暗号技術フレームワーク(A New Cryptography Framework for Secure Genomic Studies)

Abstract

Sharing data across institutions for genome-wide association studies (GWAS) would enhance the discovery of genetic variation linked to health and disease1,2. However, existing data-sharing regulations limit the scope of such collaborations3. Although cryptographic tools for secure computation promise to enable collaborative analysis with formal privacy guarantees, existing approaches either are computationally impractical or do not implement current state-of-the-art methods4,5,6. We introduce secure federated genome-wide association studies (SF-GWAS), a combination of secure computation frameworks and distributed algorithms that empowers efficient and accurate GWAS on private data held by multiple entities while ensuring data confidentiality. SF-GWAS supports widely used GWAS pipelines based on principal-component analysis or linear mixed models. We demonstrate the accuracy and practical runtimes of SF-GWAS on five datasets, including a UK Biobank cohort of 410,000 individuals, showcasing an order-of-magnitude improvement in runtime compared to previous methods. Our work enables secure collaborative genomic studies at unprecedented scale.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました