ニューロンが備える代替エネルギー源、脳のストレス時に発動(Neurons use built-in ‘backup batteries’ that fuel the brain under stress)

ad

2025-07-15 イェール大学

イェール大学の研究で、ニューロン自身がグリコーゲンを蓄え、ストレス時に即座に分解してエネルギーを供給する「バックアップバッテリー」機能を持つことが判明。モデル生物C. elegansを用い、バイオセンサーHYlightにより細胞内グリコーゲン動態を可視化。代謝酵素PYGL‑1の操作実験から、グリコーゲン依存的解糖柔軟性(GDGP)という新たなエネルギー維持機構を提唱。脳卒中や神経変性疾患への応用が期待される。

<関連情報>

神経細胞における解糖系可塑性を支えるグリコーゲン Glycogen supports glycolytic plasticity in neurons

Milind Singh, Aaron D. Wolfe, Anjali A. Vishwanath, +4 , and Daniel Colón-Ramos
Proceedings of the National Academy of Sciences  Published:July 10, 2025
DOI:https://doi.org/10.1073/pnas.2509003122

ニューロンが備える代替エネルギー源、脳のストレス時に発動(Neurons use built-in ‘backup batteries’ that fuel the brain under stress)

Significance

It has long been assumed that glycogen in the brain is primarily a glial energy reserve, with limited direct relevance to neurons. Yet, recent studies have demonstrated a role for glycogen in neuronal function. Here, we extend these findings, demonstrating that neurons directly metabolize glycogen to support glycolysis in vivo. Using a metabolic biosensor in Caenorhabditis elegans, we uncover a neuron-intrinsic, glycogen-dependent glycolytic plasticity that is specifically activated during hypoxia and mitochondrial dysfunction. This direct neuronal use of glycogen is essential for sustaining synaptic function, revealing an unexpected and critical role for glycogen in neuronal energy metabolism.

Abstract

Glycogen is the largest energy reserve in the brain, but the specific role of glycogen in supporting neuronal energy metabolism in vivo is not well understood. We established a system in Caenorhabditis elegans to dynamically probe glycolytic states in single cells of living animals via the use of the glycolytic sensor HYlight and determined that neurons can dynamically regulate glycolysis in response to activity or transient hypoxia. We performed an RNAi screen and identified that PYGL-1, an ortholog of the human glycogen phosphorylase, is required in neurons for glycolytic plasticity. We determined that neurons employ at least two mechanisms of glycolytic plasticity: glycogen-dependent glycolytic plasticity (GDGP) and glycogen-independent glycolytic plasticity. We uncover that GDGP is employed under conditions of mitochondrial dysfunction, such as transient hypoxia or in mutants for mitochondrial function. We find that the loss of GDGP impairs glycolytic plasticity and is associated with defects in synaptic vesicle recycling during hypoxia. Together, our study reveals that, in vivo, neurons can directly use glycogen as a fuel source to sustain glycolytic plasticity and synaptic function.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました