全脳オルガノイドの開発(Hopkins Scientists Grow Novel ‘Whole-Brain’ Organoid)

ad

2025-07-25 ジョンズ・ホプキンス大学 (JHU)

ジョンズホプキンス大学の研究チームが、複数の脳領域を融合させた「全脳オルガノイド」の作製に成功した。これは実験室で培養された脳組織を接合し、実際の胎児脳に近い構造と機能を再現するもので、神経疾患の発症機構や薬剤反応の解析に活用が期待される。全脳モデルは従来の動物実験に代わる手段として注目され、アルツハイマー病や統合失調症などの研究に新たな道を開くとされる。

<関連情報>

大脳、中後脳、内皮系を統合した多領域脳オルガノイド Multi-Region Brain Organoids Integrating Cerebral, Mid-Hindbrain, and Endothelial Systems

Anannya Kshirsagar, Hayk Mnatsakanyan, Sai Kulkarni, John Guo, Kai Cheng, Luke Daniel Ofria, Oce Bohra, Ram Sagar, Vasiliki Mahairaki, Christian E Badr, Annie Kathuria
Advanced Science  Published: 08 July 2025
DOI:https://doi.org/10.1002/advs.202503768

全脳オルガノイドの開発(Hopkins Scientists Grow Novel ‘Whole-Brain’ Organoid)

Abstract

Brain organoid technology has revolutionized the ability to model human neurodevelopment in vitro. However, current techniques remain limited by their reliance on simplified endothelial cell populations. Multi-Region Brain Organoids (MRBOs) are engineered that integrate cerebral, mid/hindbrain, and complex endothelial organoids into one structure. Unlike earlier approaches based on isolated Human Umbilical Vein Endothelial Cells, the endothelial organoids contain diverse vascular cell types, including progenitors, mature endothelial cells, pericytes, proliferating angiogenic cells, and stromal cells. The strategy employs sequential modulation of key developmental pathways to generate individual organoids, followed by optimized fusion conditions that maintain regional identities while supporting cellular integration. Single-nucleus RNA sequencing reveals that MRBOs develop discrete neural populations specific to each brain region alongside specialized endothelial populations that establish paracrine signaling networks. Integration analysis with human fetal brain data shows that MRBOs contribute to 80% of cellular clusters found in human fetal brain tissue (Carnegie stages 12–16). CellChat analysis identifies 13 previously uncharacterized endothelial-neural signaling interactions. Endothelial-derived factors are uncovered that support intermediate progenitor populations during hindbrain development, but not cerebral development, revealing a role for endothelial populations in regional brain patterning. This platform enables matching of multiple developmental regions while incorporating endothelial components, providing opportunities for studying neurodevelopmental disorders with disrupted neural-endothelial interactions.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました