細胞遺伝子工学

細胞遺伝子工学

オペロン構造の進化過程の実証実験に成功

原核生物のゲノムに普遍的な挿入配列と呼ばれる配列によって、オペロンを形成する進化が駆動されるとする新たな仮説を提唱しました。大腸菌を実験室で挿入配列の活性が高い条件で培養することで、仮説通りにオペロンが形成されうることを実証しました。今まで未知であった原核生物のオペロンの形成メカニズムの一つを、進化過程の観測によって初めて実証した研究です。
細胞遺伝子工学

Pfs230マラリア伝搬阻止ワクチン効果発現に関わる抗原部位の発見

マラリア伝搬阻止ワクチンPfs230の効果発現に関わる抗原部位を発見しました。PROSのグループが現在GHIT Fundから助成を得て前臨床開発を進めているPfs230伝搬阻止ワクチンの、効果発現に関わる主要な抗原部位を決定したもので、次世代マラリア伝搬阻止ワクチンの研究開発へ向けて、新しいページを画するものと期待されます。
細胞遺伝子工学

シグナル伝達による多様な細胞応答の起源~実験と理論の融合による反応特性の決定~

細胞が外界のシグナル分子を受け取る受容体ERBBファミリー。ERBBの組成を様々に変えた細胞と複数のシグナル分子を用いた計測実験を行い、ERBBの可能な反応を全て取り込んだ数理モデルを適用することで、4種のERBBの反応の性質やシグナルによる反応の変化を初めて特定しました。さらに、数理解析を進め、応答の多様性に本質的な役割をになう反応を明らかにしました。
細胞遺伝子工学

世界初!変異処理した植物から、直接、DNA に生じた突然変異を全検出~成熟前でもよい実をつける枝を選抜できる?新しい品種開発技術への展開に期待~

細胞に突然変異が起きているかを、赤色色素のある・なしで簡単に視覚的に識別する方法を開発しました。識別した突然変異を起こした細胞から、量子ビーム照射で生じた DNA の変異を、直接、網羅的に同定することに初めて成功しました。
細胞遺伝子工学

機能性の高い移植用網膜組織の開発~遺伝子改変ヒトES細胞を用いた未熟網膜組織の移植~

特定の遺伝子を欠失させたヒトES細胞から網膜組織を分化誘導して移植に用いることにより、理想に近い生着を可能にする網膜組織を作製できることを明らかにしました。「網膜変性疾患」に対する再生医療において、臨床応用可能な網膜組織の作製を実現すると期待できます。
細胞遺伝子工学

デグロン技術はなぜ細胞核機能の研究に役立つのか?

通常培養細胞は24時間程度で2倍に増殖するため、核内反応に関与するタンパク質の機能を調べるには、数分〜数時間以内に標的タンパク質を除去し、その影響を調べることが、二次的影響を避けるために重要です。標的タンパク質を迅速分解除去することを可能にする「デグロン法」は、細胞核機能の研究に適した手法といえます。当研究室が開発したオーキシンデグロン(AID)法を含め、これまでに開発されたデグロン技術を説明し、どのような細胞核機能研究に役立ってきたかを紹介しました。
細胞遺伝子工学

mRNAの安定性は遺伝暗号コドンの組み合わせによって変化する。その原因は「リボソームの減速」

DNAから転写されたメッセンジャーRNA(mRNA)からタンパク質が作られる際のリボソームの移動のスピードが、mRNA自身の寿命を決めていることを明らかにしました。mRNAの寿命が伸びるようワクチンの配列をデザインすることで、mRNAワクチンの最適化や生体内でのコントロール技術の創出が期待されます。
細胞遺伝子工学

ゲノム編集の結果を正しく理解する〜複雑なゲノム編集変異を網羅的に解析する手法を開発〜

ゲノム編集で狙った遺伝子に意図した改変が起きたのか、それとも、意図しない改変が起きたのかを自動的に識別・分類する手法を開発しました。
細胞遺伝子工学

胎盤らしさを支える分子基盤を解明~胎盤の細胞は高度に安定化されたクロマチン構造をとる~

将来胎盤を構成する「胎盤系列の細胞」は巨大なヘテロクロマチン構造をとり、これらが胎盤の細胞を維持させるために重要であることを明らかにしました。
細胞遺伝子工学

DPANN群に属する難培養性アーキアの培養に成功。寄生性アーキアの新しい生理生態を発見

培養が極めて難しいDPANN群に属する寄生性アーキア(古細菌)の培養に成功し、形態学的特徴、生理性状、宿主依存性、全ゲノム配列情報を明らかにしました。DPANN群の中に「複数種の宿主を持つ寄生性アーキア」が存在することを世界で初めて培養実験によって確認しました。培養に成功したDPANNアーキア(ARM-1株)を微生物リソースとして公開しました。
ad
Follow
タイトルとURLをコピーしました