新AIツールが宇宙飛行士の視力低下リスクを予測(New AI Tool Predicts Vision Loss Risk in Astronauts ― Before Launch)

ad

2025-09-08 カリフォルニア大学サンディエゴ校 (UCSD)

カリフォルニア大学サンディエゴ校の研究チームは、宇宙飛行士が打ち上げ前に視力低下リスクを把握できるAIツールを開発した。宇宙滞在では微小重力の影響で「宇宙飛行関連神経眼症候群(SANS)」と呼ばれる視覚障害が生じることがあり、長期ミッションの大きな課題となっている。研究者らはNASAの支援を受け、高解像度眼スキャン画像をスーパーコンピュータ「Expanse」で解析し、AIが症状が出る前に高リスク者を特定できる仕組みを構築した。これにより、打ち上げ前に予防的治療や訓練を行うことが可能となり、宇宙飛行士の安全性が向上する。今回の技術は眼科医療にも応用可能で、地上での加齢性眼疾患の早期発見に役立つ可能性もある。研究成果は、将来の月・火星探査を含む長期宇宙飛行において視覚の健康を守る重要な一歩とされる。

<関連情報>

宇宙飛行関連神経眼症候群を予測する人工知能深層学習モデル Artificial Intelligence Deep Learning Models to Predict Spaceflight Associated Neuro-Ocular Syndrome

Alex S. Huang ∙ Jalil Jalili ∙ Evan Walker ∙ … ∙ Steven S. Laurie ∙ Brandon R. Macias ∙ Mark Christopher
American Journal of Ophthalmology  Published:June 10, 2025
DOI:https://doi.org/10.1016/j.ajo.2025.06.009

新AIツールが宇宙飛行士の視力低下リスクを予測(New AI Tool Predicts Vision Loss Risk in Astronauts ― Before Launch)

Abstract

Purpose

To create deep learning artificial intelligence (AI) models for predicting the development of Spaceflight Associated Neuro-Ocular Syndrome (SANS) using optical coherence tomography (OCT) imaging of the optic nerve head.

Design

Retrospective analysis.

Methods

AI deep learning models were trained to predict SANS onset by using two OCT datasets: pre- and inflight OCT images acquired from astronauts (flight data) and pre- and in-bedrest images from research participants undergoing head-down tilt bedrest as an Earth-bound model of SANS (ground data). Both datasets were partitioned by participant into training and testing data. Resnet50-based models were trained using exclusively flight data, exclusively ground data, and a combination of both. All models were evaluated based on their ability to predict SANS using only pre-flight or pre-bedrest imaging in both datasets. Performance was assessed using receiver operating characteristic areas under the curve (AUC). Class activation maps (CAMs) were generated to identify impactful image regions.

Results

The model trained on flight data achieved an AUC (95% CI) of 0.82 (0.54-1.0) on flight data and 0.67 (0.51-0.83) on ground data. The ground-trained model achieved an AUC of 0.71 (0.50-0.91) on ground data and 0.76 (0.51-0.91) on flight data. The combined model achieved an AUC of 0.81 (0.53-0.95) and 0.72 (0.52-0.92) on flight and ground data, respectively. CAMs identified peripapillary regions of the nerve fiber layer, retinal pigmented epithelium, and anterior lamina surface as most important for predictions.

Conclusions

AI models can predict SANS based on pre-flight OCT imaging with moderate-to-high performance even in this data-limited setting. The performance of cross-trained models and similarity in CAMs suggests similarity between SANS-related changes in flight and ground datasets, proving further support that head-down tilt bedrest is a reasonable Earth-bound model for SANS. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました