シアノバクテリアの環境適応機構を構造プロテオミクスで解明(Cyanobacteria Rapidly Adapt Through Structural Remodeling of the Proteome)

ad

2026-02-11 パシフィック・ノースウェスト国立研究所(PNNL)

Pacific Northwest National Laboratoryの研究では、シアノバクテリアが環境変動に対し、細胞内構造を迅速に再編成することで適応する仕組みが明らかになった。光や栄養条件の変化などのストレス下で、光合成関連複合体や膜構造がダイナミックに再構築され、エネルギー利用効率を調整する様子を解析。高度な顕微鏡観察と分子解析により、構造的リモデリングが生存戦略として機能することを示した。成果は、微生物の適応進化の理解を深めるとともに、バイオ燃料生産や環境応用に向けた微生物設計にも貢献する可能性がある。

シアノバクテリアの環境適応機構を構造プロテオミクスで解明(Cyanobacteria Rapidly Adapt Through Structural Remodeling of the Proteome)
Understanding molecular modifications in red yeast could help scientists re-engineer the organism’s phenotype.(Image by Stephanie King | Pacific Northwest National Laboratory)

<関連情報>

シアノバクテリアの環境変動への迅速な適応は、プロテオームの構造リモデリングによって達成される Rapid adaptation of cyanobacteria to environmental perturbations is achieved through structural remodeling of the proteome

Snigdha Sarkar, Elise M. Van Fossen, Xiaolu Li, Tong Zhang, Song Feng, Victoria Prozapas, Ivo Díaz Ludovico, Abdullah D. Shouaib, Chelsea M. Hutchinson-Bunch, Natalie C. Sadler, Isaac K. Attah, Wei-Jun Qian, Margaret S. Cheung, Pavlo Bohutskyi, John T. Melchior
Molecular & Cellular Proteomics  Available online: 3 November 2025
DOI:https://doi.org/10.1016/j.mcpro.2025.101443

Highlights

  • Structural proteomics reveal how cyanobacteria adapt to changing light.
  • Light shifts trigger remodeling of phycobilisome and electron transport proteins.
  • Data integration shows how photosynthesis regulates carbon metabolism pathways

Abstract

Dynamic environments require cyanobacteria to rapidly respond to fluctuating light conditions on timescales faster than transcription-translation processes allow, which is possible through immediate regulation of protein function via molecular and conformational adjustments. Traditional abundance-based proteomics cannot capture these rapid structural changes, creating a critical gap in understanding cellular adaptation mechanisms. We hypothesized that application of alternative structural proteomics approaches would enable identification of immediate and extensive structural remodeling across the cyanobacterial proteome triggered by environmental perturbations, potentially driving functional adaptations invisible to conventional abundance-based methods. We interrogated three complementary techniques—limited proteolysis mass spectrometry (LiP-MS), thermal proteome profiling (TPP-MS), and redox proteomics—for their capacity to unveil structural reorganization within the model cyanobacterium Synechococcus elongatus PCC 7942 during physiologically relevant light transitions. Within 30 minutes of increased light exposure, we detected structural changes in 753 proteins (LiP-MS), thermal stability shifts in 600 proteins (TPP-MS), and cysteine oxidation in 1,887 sites, while only 145 proteins changed in abundance. All three techniques consistently revealed coordinated remodeling of photosynthetic machinery, ribosomal complexes, and carbon metabolism, exemplified by cytochrome f stabilization modulating electron transport efficiency. Remarkably, <10% of proteins overlapped between methods, demonstrating that each technique captures distinct molecular dimensions of environmental adaptation. This structural proteomics framework demonstrates how alternative techniques can reveal hidden facets of proteome dynamics underlying cellular processes, offering new methodological approaches for understanding environmental responses and informing biotechnological applications.

生物環境工学
ad
ad
Follow
ad
タイトルとURLをコピーしました