グラグラするゲルマットが筋肉細胞を訓練する(Wobbly gel mat trains muscle cells to work together)

ad

2023-10-20 マサチューセッツ工科大学(MIT)

◆MITの研究者は、細胞用のワークアウトマットのようなものを開発し、運動の細胞への微視的な効果を調査できるようにしました。この新しいデザインは、ハイドロゲルから作られており、その中に埋め込まれた磁気微粒子によって力を作用させます。これにより、細胞は実際の運動時に経験する力を模倣できます。
◆研究によれば、定期的な力学的運動により筋繊維が成長し、同じ方向に整列します。この新しいデバイスを使用して、強力で機能的な筋肉をパターン化し、ソフトロボットや疾患組織の修復に使用できる可能性があります。研究者は、このデバイスを使って、筋肉の再成長を促進する方法や加齢の影響を軽減する方法を研究し、医学分野での応用を模索する予定です。

<関連情報>

作動する細胞外マトリックスで人工筋肉の異方性を機械的にプログラミングする Mechanically programming anisotropy in engineered muscle with actuating extracellular matrices

Brandon Rios,Angel Bu,Tara Sheehan,Hiba Kobeissi,Sonika Kohli,Karina Shah,Emma Lejeune,Ritu Raman
Device  Published:October 20, 2023
DOI:https://doi.org/10.1016/j.device.2023.100097

Highlights

•Magnetic microparticles are embedded in an extracellular-matrix-mimicking gel
•Controlled movement of a permanent magnet drives gel actuation
•Magnetic matrix actuation (MagMA) programs alignment of skeletal muscle fibers
•MagMA-aligned muscle tissues generate synchronous contractile twitch

The bigger picture

Cells within tissues communicate with each other, and with their surrounding matrix, thorough biochemical, electrical, and mechanical signals. While there are a range of techniques for mapping and controlling electrical and biochemical communication within multicellular systems, there is a significant need for tools that measure and modulate mechanical stimuli in a similar manner. A platform for dynamically patterning forces within tissues would enable mechanically programming morphology and function of various adaptive mechanobiological processes.

Summary

The hierarchical design and adaptive functionalities of biological tissues are driven by dynamic biochemical, electrical, and mechanical signaling between cells and their extracellular matrices. While existing tools enable monitoring and controlling biochemical and electrical signaling in multicellular systems, there is a significant need for techniques that enable mapping and modulating intercellular mechanical signaling. We have developed a magnetically actuated extracellular matrix that serves as a mechanically active substrate for cells and can program morphological and functional anisotropy in tissues such as skeletal muscle. This method improves the ease and efficiency of programming muscle force directionality and synchronicity for applications ranging from medicine to robotics. Additionally, we present an open-source computational framework enabling quantitative analyses of muscle contractility. Our actuating matrices and accompanying tools are broadly applicable across cell types and hydrogel chemistries, and they can drive fundamental studies in mechanobiology as well as translational applications of engineered tissues in medicine and machines.

Graphical abstract

Figure thumbnail fx1

ad

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました