柔らかく伸縮性のある電極が電気信号を使って触覚をシミュレート(Soft, Stretchy Electrode Simulates Touch Sensations Using Electrical Signals)

ad

2024-06-28 カリフォルニア大学サンディエゴ校(UCSD)

Clear plastic strip with black dot and squiggly lines worn on an arm.
Soft, stretchable electrode recreates sensations of vibration or pressure on the skin through electrical stimulation. Photos by Liezel Labios/UC San Diego Jacobs School of Engineering

カリフォルニア大学サンディエゴ校の研究チームが、皮膚に圧力や振動の感覚を再現できる柔らかく伸縮性のある電子デバイスを開発しました。このデバイスは、シリコンパッチに取り付けられた柔らかい電極で構成され、指先や前腕にシールのように装着できます。外部電源からの微弱な電流を皮膚に送ることで、信号の周波数に応じて圧力や振動の感覚を再現します。この技術は、電気刺激で痛みを引き起こすことなく多様な触覚を再現することを目指しています。試験では10人の参加者がデバイスを装着し、電気刺激の周波数を調整して圧力や振動の感覚を体験しました。これにより、仮想現実、医療用義肢、ウェアラブル技術などの応用が期待されます。

<関連情報>

導電性ブロック共重合体エラストマーと心理物理学的閾値処理で正確な触覚効果を実現 Conductive block copolymer elastomers and psychophysical thresholding for accurate haptic effects

RACHEL BLAU, ABDULHAMEED ABDAL, NICHOLAS ROOT, ALEXANDER X. CHEN, […], AND DARREN J. LIPOMI
Science Robotics  Published:12 Jun 2024
DOI:https://doi.org/10.1126/scirobotics.adk3925

Editor’s summary

Most haptic devices rely on mechanical actuators to stimulate the skin but are limited in range. Alternatively, electrical stimulation of mechanosensory neurons can be perceived as a mechanical force but often requires high currents and leads to unwanted effects, such as pain. Blau et al. developed an electrotactile device made from a conductive block copolymer in a serpentine shape that exhibited microscopic conformability with the skin. When tested on human participants, the device provided stimulation at very low currents and could toggle between pressure and vibration by changing the signal frequency. Safe and reliable electrotactile stimulation is a promising development for haptic devices such as human-machine interfaces and prosthetics. —Melisa Yashinski

Abstract

Electrotactile stimulus is a form of sensory substitution in which an electrical signal is perceived as a mechanical sensation. The electrotactile effect could, in principle, recapitulate a range of tactile experience by selective activation of nerve endings. However, the method has been plagued by inconsistency, galvanic reactions, pain and desensitization, and unwanted stimulation of nontactile nerves. Here, we describe how a soft conductive block copolymer, a stretchable layout, and concentric electrodes, along with psychophysical thresholding, can circumvent these shortcomings. These purpose-designed materials, device layouts, and calibration techniques make it possible to generate accurate and reproducible sensations across a cohort of 10 human participants and to do so at ultralow currents (≥6 microamperes) without pain or desensitization. This material, form factor, and psychophysical approach could be useful for haptic devices and as a tool for activation of the peripheral nervous system.

ad
生物工学一般
ad
ad


Follow
ad
タイトルとURLをコピーしました