AIが耐性菌に対抗する安全で効果的な新抗生物質への扉を開く(AI Opens Door to Safe, Effective New Antibiotics to Combat Resistant Bacteria)

ad

2024-07-31 テキサス大学オースチン校(UT Austin)

テキサス大学オースティン校の研究者たちは、人工知能を活用して、新しい抗生物質を開発し、動物実験で有望な結果を示しました。Nature Biomedical Engineeringに発表された研究では、大規模言語モデル(LLM)を使用して、以前は人間にとって有害だった細菌殺菌薬を安全に改良しました。抗生物質耐性菌の増加と新しい治療法の開発の停滞が問題となっている中、このAI技術は大きな進展とされています。LLMはテキスト生成のために設計されましたが、研究者たちはこれをタンパク質やペプチドの工学に応用しました。具体的には、豚が感染と戦うために自然に生成する抗生物質Protegrin-1を改良し、bsPG-1.2という新しいバージョンを開発しました。これにより、マウスの感染治療に成功し、今後の人間への応用が期待されています。

<関連情報>

膜選択性を駆動する抗菌ペプチドの特徴解析のための Deep mutational scanning and machine learning for the analysis of antimicrobial-peptide features driving membrane selectivity

Justin R. Randall,Luiz C. Vieira,Claus O. Wilke & Bryan W. Davies
Nature Biomedical Engineering  Published:31 July 2024
DOI:https://doi.org/10.1038/s41551-024-01243-1

AIが耐性菌に対抗する安全で効果的な新抗生物質への扉を開く(AI Opens Door to Safe, Effective New Antibiotics to Combat Resistant Bacteria)

Abstract

Many antimicrobial peptides directly disrupt bacterial membranes yet can also damage mammalian membranes. It is therefore central to their therapeutic use that rules governing the membrane selectivity of antimicrobial peptides be deciphered. However, this is difficult even for short peptides owing to the large combinatorial space of amino acid sequences. Here we describe a method for measuring the loss or maintenance of antimicrobial-peptide activity for thousands of peptide-sequence variants simultaneously, and its application to Protegrin-1, a potent yet toxic antimicrobial peptide, to determine the positional importance and flexibility of residues across its sequence while identifying variants with changes in membrane selectivity. More bacterially selective variants maintained a membrane-bound secondary structure while avoiding aromatic residues and cysteine pairs. A machine-learning model trained with our datasets accurately predicted membrane-specific activities for over 5.7 million Protegrin-1 variants, and identified one variant that showed substantially reduced toxicity and retention of activity in a mouse model of intraperitoneal infection. The high-throughput methodology may help elucidate sequence–structure–function relationships in antimicrobial peptides and inform the design of peptide-based synthetic drugs.

表面表示ペプチドライブラリーの細菌セルフスクリーニングによる次世代抗菌薬の発見 Discovery of Next-Generation Antimicrobials through Bacterial Self-Screening of Surface-Displayed Peptide Libraries

Ashley T. Tucker,Sean P. Leonard,Cory D. DuBois,…,Claus O. Wilke,M. Stephen Trent,Bryan W. Davies
Cell   Published:January 04, 2018
DOI:https://doi.org/10.1016/j.cell.2017.12.009

Graphical Abstract

Figure thumbnail fx1

Video Abstract

(mp4, (17.45 MB)

Download video

Highlights

  • Development of a high-throughput platform for discovery of antimicrobial peptides
  • Screening 800,000 peptides uncovered thousands of synthetic antimicrobial sequences
  • Lead peptides exhibit potent antimicrobial activity and distinctive mechanisms
  • Lead hit antimicrobial physicochemistry extends far beyond what nature has evolved

Summary

Peptides have great potential to combat antibiotic resistance. While many platforms can screen peptides for their ability to bind to target cells, there are virtually no platforms that directly assess the functionality of peptides. This limitation is exacerbated when identifying antimicrobial peptides because the phenotype, death, selects against itself and has caused a scientific bottleneck that confines research to a few naturally occurring classes of antimicrobial peptides. We have used this seeming dissonance to develop Surface Localized Antimicrobial Display (SLAY), a platform that allows screening of unlimited numbers of peptides of any length, composition, and structure in a single tube for antimicrobial activity. Using SLAY, we screened ∼800,000 random peptide sequences for antimicrobial function and identified thousands of active sequences, dramatically increasing the number of known antimicrobial sequences. SLAY hits present with different potential mechanisms of peptide action and access to areas of antimicrobial physicochemical space beyond what nature has evolved.

 

 

 

 

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました