AIが脳疾患の新薬開発ペースを加速させる(AI accelerates the pace of development of new drugs for brain diseases)

ad

2024-08-09 カロリンスカ研究所(KI)

AIが精神疾患の新薬開発に有望な分子を特定する能力を持つことが、カロリンスカ研究所などの研究者によって明らかにされた。この研究は「Science Advances」誌に発表され、マウスを対象に行われた。AIを用いることで、精神疾患の治療に効果的な新薬の開発が可能になると期待されている。特に、TAAR1というタンパク質に作用する分子が統合失調症や精神病の治療に有望であることが示された。AIの予測構造は非常に高精度であった。

<関連情報>

AlphaFoldが微量アミン関連受容体1を標的とする向精神薬作動薬の発見を加速 AlphaFold accelerated discovery of psychotropic agonists targeting the trace amine–associated receptor 1

Alejandro Díaz-Holguín, Marcus Saarinen, Duc Duy Vo, Andrea Sturchio, […], and Per Svenningsson
Science Advances  Published:7 Aug 2024
DOI:https://doi.org/10.1126/sciadv.adn1524

AIが脳疾患の新薬開発ペースを加速させる(AI accelerates the pace of development of new drugs for brain diseases)

Abstract

Artificial intelligence is revolutionizing protein structure prediction, providing unprecedented opportunities for drug design. To assess the potential impact on ligand discovery, we compared virtual screens using protein structures generated by the AlphaFold machine learning method and traditional homology modeling. More than 16 million compounds were docked to models of the trace amine–associated receptor 1 (TAAR1), a G protein–coupled receptor of unknown structure and target for treating neuropsychiatric disorders. Sets of 30 and 32 highly ranked compounds from the AlphaFold and homology model screens, respectively, were experimentally evaluated. Of these, 25 were TAAR1 agonists with potencies ranging from 12 to 0.03 μM. The AlphaFold screen yielded a more than twofold higher hit rate (60%) than the homology model and discovered the most potent agonists. A TAAR1 agonist with a promising selectivity profile and drug-like properties showed physiological and antipsychotic-like effects in wild-type but not in TAAR1 knockout mice. These results demonstrate that AlphaFold structures can accelerate drug discovery.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました