新しいバイオプリンティング技術で機能的組織を10倍速く作成(New bioprinting technique creates functional tissue 10x faster)

ad

2024-12-03 ペンシルベニア州立大学(PennState)

ペンシルベニア州立大学の研究チームは、細胞の集合体であるスフェロイドを用いて複雑な組織を作製する新たなバイオプリンティング技術「HITS-Bio(High-throughput Integrated Tissue Fabrication System for Bioprinting)」を開発しました。この技術により、従来の方法と比較して10倍の速さで組織を作製でき、高い細胞生存率を維持しながら、精密かつ大規模な組織の構築が可能となります。HITS-Bioは、デジタル制御されたノズルアレイを使用し、複数のスフェロイドを同時に操作・配置することで、従来の一つずつ配置する手法に比べ、組織作製の効率と精度を大幅に向上させています。この進展は、再生医療分野における機能的な組織や臓器の開発を加速させる可能性があります。

<関連情報>

スケーラブルな組織作製のためのスフェロイドの高スループットバイオプリンティング High-throughput bioprinting of spheroids for scalable tissue fabrication

Myoung Hwan Kim,Yogendra Pratap Singh,Nazmiye Celik,Miji Yeo,Elias Rizk,Daniel J. Hayes & Ibrahim T. Ozbolat

Nature Communications  Published:21 November 2024

DOI:https://doi.org/10.1038/s41467-024-54504-7

新しいバイオプリンティング技術で機能的組織を10倍速く作成(New bioprinting technique creates functional tissue 10x faster)

Abstract

Tissue biofabrication mimicking organ-specific architecture and function requires physiologically-relevant cell densities. Bioprinting using spheroids can achieve this, but is limited due to the lack of practical, scalable techniques. This study presents HITS-Bio (High-throughput Integrated Tissue Fabrication System for Bioprinting), a multiarray bioprinting technique for rapidly positioning multiple spheroids simultaneously using a digitally-controlled nozzle array (DCNA). HITS-Bio achieves an unprecedented speed, ten times faster compared to existing techniques while maintaining high cell viability ( > 90%). The utility of HITS-Bio was exemplified in multiple applications, including intraoperative bioprinting with microRNA transfected human adipose-derived stem cell spheroids for calvarial bone regeneration ( ~ 30 mm3) in a rat model achieving a near-complete defect closure (bone coverage area of ~ 91% in 3 weeks and ~96% in 6 weeks). Additionally, the successful fabrication of scalable cartilage constructs (1 cm3) containing ~600 chondrogenic spheroids highlights its high-throughput efficiency (under 40 min per construct) and potential for repairing volumetric defects.

生物製剤の正確な位置決めのための吸引支援バイオプリンティング Aspiration-assisted bioprinting for precise positioning of biologics

Bugra Ayan, Dong Nyoung Heo, Zhifeng Zhang, Madhuri Dey, […], and Ibrahim T. Ozbolat

Science Advances  Published:6 Mar 2020

DOI:https://doi.org/10.1126/sciadv.aaw5111

Abstract

Three-dimensional (3D) bioprinting is an appealing approach for building tissues; however, bioprinting of mini-tissue blocks (i.e., spheroids) with precise control on their positioning in 3D space has been a major obstacle. Here, we unveil “aspiration-assisted bioprinting (AAB),” which enables picking and bioprinting biologics in 3D through harnessing the power of aspiration forces, and when coupled with microvalve bioprinting, it facilitated different biofabrication schemes including scaffold-based or scaffold-free bioprinting at an unprecedented placement precision, ~11% with respect to the spheroid size. We studied the underlying physical mechanism of AAB to understand interactions between aspirated viscoelastic spheroids and physical governing forces during aspiration and bioprinting. We bioprinted a wide range of biologics with dimensions in an order-of-magnitude range including tissue spheroids (80 to 600 μm), tissue strands (~800 μm), or single cells (electrocytes, ~400 μm), and as applications, we illustrated the patterning of angiogenic sprouting spheroids and self-assembly of osteogenic spheroids.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました