新しいAI技術で細胞内の働きを予測 (New AI Predicts Inner Workings of Cells)

ad

2025-01-08 コロンビア大学

コロンビア大学の研究チームは、新しいAIモデルを用いて細胞内の遺伝子発現を正確に予測する技術を開発しました。このモデルは、正常組織から得られた130万以上の細胞データを基に訓練され、未解析の細胞の遺伝子発現を予測可能です。この技術は、小児性白血病などの疾患で変異の影響を特定し、病因を解明する手助けをしています。また、ゲノムの「暗黒物質」とされる領域の解析を進めることで、がんや他の疾患の新たな治療ターゲットを特定できる可能性があります。

<関連情報>

ヒト細胞型における転写の基礎モデル A foundation model of transcription across human cell types

Xi Fu,Shentong Mo,Alejandro Buendia,Anouchka P. Laurent,Anqi Shao,Maria del Mar Alvarez-Torres,Tianji Yu,Jimin Tan,Jiayu Su,Romella Sagatelian,Adolfo A. Ferrando,Alberto Ciccia,Yanyan Lan,David M. Owens,Teresa Palomero,Eric P. Xing & Raul Rabadan
Nature  Published:08 January 2025
DOI:https://doi.org/10.1038/s41586-024-08391-z

新しいAI技術で細胞内の働きを予測 (New AI Predicts Inner Workings of Cells)

Abstract

Transcriptional regulation, which involves a complex interplay between regulatory sequences and proteins, directs all biological processes. Computational models of transcription lack generalizability to accurately extrapolate to unseen cell types and conditions. Here we introduce GET (general expression transformer), an interpretable foundation model designed to uncover regulatory grammars across 213 human fetal and adult cell types1,2. Relying exclusively on chromatin accessibility data and sequence information, GET achieves experimental-level accuracy in predicting gene expression even in previously unseen cell types3. GET also shows remarkable adaptability across new sequencing platforms and assays, enabling regulatory inference across a broad range of cell types and conditions, and uncovers universal and cell-type-specific transcription factor interaction networks. We evaluated its performance in prediction of regulatory activity, inference of regulatory elements and regulators, and identification of physical interactions between transcription factors and found that it outperforms current models4 in predicting lentivirus-based massively parallel reporter assay readout5,6. In fetal erythroblasts7, we identified distal (greater than 1 Mbp) regulatory regions that were missed by previous models, and, in B cells, we identified a lymphocyte-specific transcription factor–transcription factor interaction that explains the functional significance of a leukaemia risk predisposing germline mutation8,9,10. In sum, we provide a generalizable and accurate model for transcription together with catalogues of gene regulation and transcription factor interactions, all with cell type specificity.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました