バイオエンジニアリングによる細菌の水素ナノリアクター化 (A green fuels breakthrough: bio-engineering bacteria to become ‘hydrogen nanoreactors’)

ad

2025-01-16 オックスフォード大学

バイオエンジニアリングによる細菌の水素ナノリアクター化 (A green fuels breakthrough: bio-engineering bacteria to become ‘hydrogen nanoreactors’)

Schematic of the sustainable bioprocess for hydrogen bioproduction. Shewanella oneidensis MR-1 uses hydrogenase to catalyse H2 synthesis from protons and electrons, powered by light and green electricity. Image credit: Wei Huang.

オックスフォード大学工学科学科の研究者たちは、合成生物学的手法を用いて、細菌を「水素ナノリアクター」として機能させることに成功しました。この技術により、再生可能エネルギーを利用して水を分解し、水素を生成するコスト効果の高いゼロカーボンの方法が実現可能となります。従来の水素製造は化石燃料に依存し、1kgの水素を生産するごとに約11.5~13.6kgのCO₂を排出していました。しかし、この新しいアプローチでは、細菌Shewanella oneidensisを遺伝子操作し、細胞内のペリプラズム空間に電子、プロトン、水素化酵素を集中的に配置しました。さらに、光活性化電子ポンプであるGloeobacterロドプシンを内膜に導入し、光の存在下で効率的にプロトンをペリプラズムに送り込みます。このシステムにより、従来の非改変株と比較して、水素生成量が10倍に増加しました。この技術は、航空や海運などの電化が難しい分野の脱炭素化において、グリーン水素が重要な役割を果たす可能性を示しています。

<関連情報>

バクテリアのバイオナノリアクターで効率的な水素製造を実現 Engineering bionanoreactor in bacteria for efficient hydrogen production

Weiming Tu, Ian P. Thompson, and Wei E. Huang

Proceedings of the National Academy of Sciences  Published:July 10, 2024

DOI:https://doi.org/10.1073/pnas.2404958121

Significance

Hydrogen production through water splitting has been substantially improved by engineering the nanoscale periplasmic space (20 to 30 nm) of Shewanella oneidensis MR-1, transforming it into a highly effective bionanoreactor. This design concentrated protons and electrons, enhancing hydrogen production. The integration of reduced graphene oxide (rGO), MtrCAB complex, and iron sulfide (FeS) nanoparticles established an effective electron transfer chain from the electrode to the periplasm. The introduction of Gloeobacter rhodopsin and canthaxanthin boosted proton pumping into the periplasm under light. This system, catalyzed by the overexpression of [FeFe]-hydrogenase and powered by both electricity and light, achieved a Faraday efficiency of 80% for hydrogen production. This periplasmic bionanoreactor marks an advancement in sustainable synthetic biology.

Abstract

Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 μmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました