微細藻類と大腸菌によるCO2変換技術の開発(Study: Microalgae and bacteria team up to convert CO2 into useful products)

ad

2025-04-01 イリノイ大学アーバナ・シャンペーン校

イリノイ大学アーバナ・シャンペーン校の研究者たちは、ミクロアルゲと大腸菌を組み合わせて二酸化炭素(CO₂)を有用な有機酸に変換する新しい方法を開発しました。この手法では、ミクロアルゲの変異体であるクラミドモナス・ラインハルディティ(Chlamydomonas reinhardtii)がCO₂を取り込み、グリコール酸を生成します。このグリコール酸を大腸菌が消費し、さらに有用な化合物を生産します。従来の方法と異なり、このアプローチは追加の炭素源を必要とせず、持続可能な生産プロセスを実現します。

<関連情報>

人工クラミドモナス(Chlamydomonas reinhardtii)と大腸菌(Escherichia coli)の合成モジュラー共培養によるCO2の貴重な生物生産物への生物変換 Bioconversion of CO2 into valuable bioproducts via synthetic modular co-culture of engineered Chlamydomonas reinhardtii and Escherichia coli

Nam Kyu Kang, Hyun Gi Koh, Yujung Choi, Hyunjun Min, Donald R. Ort, Yong-Su Jin
Metabolic Engineering  Available online: 7 March 2025
DOI:https://doi.org/10.1016/j.ymben.2025.03.004

Graphical abstract

微細藻類と大腸菌によるCO2変換技術の開発(Study: Microalgae and bacteria team up to convert CO2 into useful products)

Highlights

  • A synthetic modular co-culture was established using microalgae and bacteria.
  • In the CO2 fixation module, C. reinhardtii converts CO2 into glycolic acid.
  • In the production module, E. coli converts glycolic acid into bioproducts.
  • GFP and lycopene were produced from CO2 via the synthetic modular co-culture.

Abstract

With increasing concern over environmental problems and energy crises, interest in the biological conversion of CO2 into bioproducts is growing. Although microalgae efficiently utilize CO2, their metabolic engineering remains challenging. In contrast, while synthetic biology tools are advanced for many heterotrophic bacteria, these organisms cannot directly utilize CO2. As such, a modular co-culture system with a glycolate dehydrogenase 1 (GYD1) deficient Chlamydomonas reinhardtii mutant and Escherichia coli was developed. The GYD1 mutant secretes glycolic acid via photorespiration, which E. coli metabolizes via the glyoxylate cycle. E. coli growth was improved by implementing two-stage continuous systems to 2.0 mg L-1 h-1 on CO2. The production of green fluorescent protein (0.52 ng L-1 h-1) and lycopene (6.3 μg L-1 h-1) was also demonstrated. This study represents a successful case of a synthetic modular co-culture with a microalga and a heterotrophic bacterium, potentially contributing to sustainable industrial processes and reducing environmental impact.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました