AIによる呼気検査で塵肺の早期発見を可能に(AI-powered breath test could detect silicosis early: study)

ad

2025-03-21 ニューサウスウェールズ大学(UNSW)

オーストラリアのニューサウスウェールズ大学(UNSW)の研究チームは、AIを活用した呼気検査によって、塵肺(シリコーシス)を迅速かつ非侵襲的に検出する新技術を開発しました。この検査は、患者がバッグに息を吹き込み、その呼気を質量分析計で分析し、AIモデルがシリコーシス患者と健常者を高精度で識別します。従来のX線やCTスキャンでは病気の進行後にしか検出できませんでしたが、この新技術は数分で結果が得られ、早期発見と介入が可能となります。研究では、31人のシリコーシス患者と60人の健常者の呼気サンプルを分析し、検査の有効性が確認されました。この技術は、建設業やトンネル工事など高リスク職種での大規模なスクリーニングに適しており、職業性肺疾患の予防と管理に新たな道を開くと期待されています

<関連情報>

質量分析と解釈可能な機械学習を用いた、珪肺症の検出を強化するための迅速で非侵襲的な呼気分析 Rapid, non-invasive breath analysis for enhancing detection of silicosis using mass spectrometry and interpretable machine learning

Merryn J Baker, Jeff Gordon, Aruvi Thiruvarudchelvan, Deborah Yates and William A Donald
Journal of Breath Research  Published 21 March 2025
DOI:10.1088/1752-7163/adbc11

AIによる呼気検査で塵肺の早期発見を可能に(AI-powered breath test could detect silicosis early: study)

Abstract

Occupational lung diseases, such as silicosis, are a significant global health concern, especially with increasing exposure to engineered stone dust. Early detection of silicosis is helpful for preventing disease progression, but existing diagnostic methods, including x-rays, computed tomography scans, and spirometry, often detect the disease only at late stages. This study investigates a rapid, non-invasive diagnostic approach using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) to analyze volatile organic compounds (VOCs) in exhaled breath from 31 silicosis patients and 60 healthy controls. Six different interpretable machine learning (ML) models with Shapley additive explanations (SHAP) were applied to classify these samples and determine VOC features that contribute the most significantly to model accuracy. The extreme gradient boosting classifier demonstrated the highest performance, achieving an area under the receiver-operator characteristic curve of 0.933 with the top ten SHAP features. The m/z 442 feature, potentially corresponding to leukotriene-E3, emerged as a significant predictor for silicosis. The VOC sampling and measurement process takes less than five minutes per sample, highlighting its potential suitability for large-scale population screening. Moreover, the ML models are interpretable through SHAP, providing insights into the features contributing to the model’s predictions. This study suggests that APCI-MS breath analysis could enable early and non-invasive diagnosis of silicosis, helping to improve disease outcomes.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました