弱視における重要な神経欠損を超高解像度脳画像で解明(Ultra-High-Resolution Brain Imaging Reveals Key Neural Deficits in Amblyopia)

ad

2025-04-16 中国科学院(CAS)

中国科学院生物物理研究所と復旦大学の研究により、弱視患者の脳内視覚処理異常が7テスラfMRIと周波数タグ付きEEGにより高精度で可視化されました。一次視覚野(V1)への入力信号が弱視眼では著しく減少し、他の視覚領域への伝達も遅延していることが判明。さらに、両眼間の抑制バランスの崩れが視覚統合機能の低下と関連していました。これらの結果は、視覚発達の障害が脳の微細回路構造に影響を与えることを示し、弱視治療の新たな基盤を提供します。

<関連情報>

ヒト弱視における単眼処理と両眼相互作用の皮質微小回路における神経活動の減衰と遅延 Attenuated and delayed neural activity in cortical microcircuitry of monocular processing and binocular interactions in human amblyopia

Yue Wang,Chencan Qian,Yige Gao,Yulian Zhou,Xiaotong Zhang,Wen Wen,Peng Zhang
Imaging Neuroscience  Published:April 11 2025
DOI:https://doi.org/10.1162/imag_a_00561

弱視における重要な神経欠損を超高解像度脳画像で解明(Ultra-High-Resolution Brain Imaging Reveals Key Neural Deficits in Amblyopia)

Abstract

Disruption of retinal input early in life can lead to amblyopia, a condition characterized by reduced visual acuity after optical correction. While functional abnormalities in the early visual areas have been observed in amblyopia, mesoscale deficits in cortical microcircuitry across cortical depth remain unexplored in humans. Using a combination of submillimeter 7T fMRI and EEG frequency-tagging methods, we investigated neural deficits in monocular processing and binocular interactions in human adults with unilateral amblyopia. The results revealed attenuated and delayed monocular activity in the thalamic input layers of V1, followed by imbalanced binocular suppression and weakened binocular integration in the superficial layers. These disruptions further reduced visual signal strength and processing speed. Our findings pinpoint specific neural deficits in the cortical microcircuitry associated with human amblyopia, offering valuable insights into the mesoscale mechanisms of developmental plasticity and paving the way for more effective treatments for this visual disorder.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました