AIツールが結核治療のメカニズムを解明(New AI Tool Reveals How Drugs Kill Tuberculosis)

ad

2025-08-25 タフツ大学

Tufts大学のブリー・オルドリッジ教授らによる研究チームは、結核菌(TB)を死滅させる薬剤のメカニズムを詳細に解明するAI支援ツール「DECIPHAER(decoding cross-modal information of pharmacologies via autoencoders)」を開発しました。このツールは、薬剤投与中のTB菌を高解像度で凍結撮影し、細胞形態の変化(モルフォロジカルプロファイリング)と転写プロファイル(遺伝子発現パターン)をAIで統合分析することで、薬がどのように菌を死滅させるかを分子レベルで特定します。例えば、臨床開発中のある薬は細胞壁破壊と推測されていましたが、実際には呼吸鎖を阻害してエネルギー産生を妨げることがDECIPHAERによって明らかになりました。この方法はコストと時間の節約になり、異なる成長条件や菌株、多剤併用にも適用可能。TBに限らず他の感染症やがんの研究にも応用が期待されます。

AIツールが結核治療のメカニズムを解明(New AI Tool Reveals How Drugs Kill Tuberculosis)
A “death portrait” of TB bacteria treated with an antibiotic and stained to show physical features of individual cells. Image: Courtesy of the Aldridge Lab

<関連情報>

多模態測定の統合により、結核薬の作用メカニズムの重要な要因を特定 Integration of multi-modal measurements identifies critical mechanisms of tuberculosis drug action

William C. Johnson ∙ Ares Alivisatos ∙ Trever C. Smith, II ∙ … ∙ Dirk Schnappinger ∙ Kyu Y. Rhee ∙ Bree B. Aldridge
Cell Systems  Published:July 29, 2025
DOI:https://doi.org/10.1016/j.cels.2025.101348

Highlights

  • Measurement of multi-omic antibiotic response profiles for tuberculosis
  • Integration of multi-omic data highlights core treatment-response features
  • A shared space enables translation from morphological to transcriptomic responses
  • Discovery of complex mechanisms of action of antibiotics with polypharmacologies

Summary

Treatments for tuberculosis remain lengthy, motivating a search for new drugs with novel mechanisms of action. However, it remains challenging to determine the direct targets of a drug and which disrupted cellular processes lead to bacterial killing. We developed a computational tool, DECIPHAER (decoding cross-modal information of pharmacologies via autoencoders), to select the important correlated transcriptional and morphological responses of Mycobacterium tuberculosis to treatment. By finding a reduced feature space, DECIPHAER highlighted essential features of cellular damage. DECIPHAER provides cell-death-relevant insight into uni-modal datasets, enabling interrogation of drug treatment responses for which transcriptional data are unavailable. Using morphological data alone with DECIPHAER, we discovered that respiration inhibition by the polypharmacological drugs SQ109 and BM212 can influence cell death more than their effects on the cell wall. This study demonstrates that DECIPHAER can extract the critical shared information from multi-modal measurements to identify cell-death-relevant mechanisms of TB drugs. A record of this paper’s transparent peer review process is included in the supplemental information.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました