細胞の記憶は「オン・オフ」ではなく「調光器」のように機能(Cell memory can be more like a dimmer than an on/off switch)

ad

2025-09-09 マサチューセッツ工科大学(MIT)

MITの研究チームは、細胞が持つ「遺伝子発現の記憶(エピジェネティックメモリー)」は単純なオン/オフではなく、段階的に調整可能な「ディマー」のように働くことを発見した。研究ではハムスター卵巣細胞の特定遺伝子に蛍光マーカーを導入し、発現レベルを完全オン、完全オフ、中間の3段階に調整。DNAメチル化を介してその状態が維持されるかを5か月間追跡した。その結果、すべての状態が長期的に安定して保持されることが確認され、細胞は中間的な発現状態も「記憶」できることが示された。この成果は、細胞のアイデンティティや多様性の理解に新たな視点を与え、未発見の細胞型や機能の存在を示唆する。将来的には、組織工学やがん研究、エピジェネティック異常への治療戦略に応用される可能性がある。

細胞の記憶は「オン・オフ」ではなく「調光器」のように機能(Cell memory can be more like a dimmer than an on/off switch)
Traditionally, scientists have thought that epigenetic memory locks genes either “on” or “off” — either fully activated or fully repressed. But MIT engineers have found that a cell’s memory is set not only by on/off switching but also through a more graded, dimmer-like dial of gene expression.
Credit: Illustration by Christine Daniloff, MIT; NIH

<関連情報>

標的クロマチン編集により明らかになったアナログエピジェネティック記憶 Analog epigenetic memory revealed by targeted chromatin editing

Sebastian Palacios ∙ Simone Bruno ∙ Ron Weiss ∙ … ∙ Andrew Kane ∙ Katherine Ilia, ∙ Domitilla Del Vecchio
Cell Genomics  Published:September 9, 2025
DOI:https://doi.org/10.1016/j.xgen.2025.100985

Highlights

  • A system was engineered to edit chromatin marks and study gene expression memory
  • Gene expression can be memorized at a spectrum of levels, not just “on”’ and “off”
  • DNA methylation grade is conserved and mediates gene expression level maintenance
  • A model indicates that analog memory emerges in the absence of DNAme-H3K9me3 feedback

Summary

Cells store information by means of chromatin modifications that persist through cell divisions and can hold gene expression silenced over generations. However, how these modifications may maintain other gene expression states has remained unclear. This study shows that chromatin modifications can maintain a wide range of gene expression levels over time, thus uncovering analog epigenetic memory. By engineering a genomic reporter and epigenetic effectors, we tracked the gene expression dynamics following targeted perturbations to the chromatin state. We found that distinct grades of DNA methylation led to corresponding, persistent gene expression levels. Altering the DNA methylation grade, in turn, resulted in permanent loss of gene expression memory. Consistent with experiments, our chromatin modification model indicates that analog memory arises when the positive feedback between DNA methylation and repressive histone modifications is lacking. This discovery will lead to a deeper understanding of epigenetic memory and to new tools for synthetic biology.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました