AIが救命治療の開発を加速(Groundbreaking AI aims to speed lifesaving therapies)

ad

2025-09-16 バージニア工科大学(Virginia Tech)

バージニア工科大学の研究チームは、創薬や治療法開発を加速するための新しいオープンソースAIツールを開発した。このAIは疾患関連タンパク質や細胞応答の予測精度を従来より高め、病気の進行や薬効の見込みを効率的に評価できる。複数の生物学データセットでテストされ、既存手法より低い誤差率を示した。これにより、標的分子の同定や細胞レベルでの反応予測といった初期段階の試行錯誤を減らし、研究コストと時間を大幅に削減できる。さらに未知の病態や新興病原体への応答を迅速にシミュレーションでき、パンデミック対策や個別化医療にも応用可能とされる。成果は Cell Systems に掲載され、広く学術・産業界で利用が期待される。

AIが救命治療の開発を加速(Groundbreaking AI aims to speed lifesaving therapies)
A 3D image of viral RNA interacting with host protein created by the ProRNA3D-single tool.

<関連情報>

幾何学的アテンション機構を組み込んだ生物言語モデルのペアリングによる単一配列タンパク質-RNA複合体構造予測 Single-sequence protein-RNA complex structure prediction by geometric attention-enabled pairing of biological language models

Rahmatullah Roche ∙ Sumit Tarafder ∙ Debswapna Bhattacharya
Cell Systems  Published:September 16, 2025
DOI:https://doi.org/10.1016/j.cels.2025.101400

Highlights

  • A protein-RNA complex structure prediction method with single-sequence input
  • Employs geometric attention-enabled pairing of heterogenous biological language models
  • Outperforms state-of-the-art methods when evolutionary information is limited

Summary

Groundbreaking progress has been made in structure prediction of biomolecular assemblies, including the recent breakthrough of AlphaFold 3. However, it remains challenging for AlphaFold 3 and other state-of-the-art deep-learning-based methods to accurately predict protein-RNA complex structures, in part due to the limited availability of evolutionary information related to protein-RNA interactions that are used as inputs to the existing approaches. Here, we introduce ProRNA3D-single, a deep-learning framework for protein-RNA complex structure prediction. Using a geometric attention-enabled pairing of biological language models of protein and RNA, a previously unexplored avenue, ProRNA3D-single predicts interatomic protein-RNA interaction maps, which are then transformed into multi-scale geometric restraints for modeling 3D structures of protein-RNA complexes via geometry optimization. Benchmark tests show that ProRNA3D-single outperforms state-of-the-art methods, including AlphaFold 3, particularly when evolutionary information is limited, and exhibits robustness and performance resilience by attaining state-of-the-art accuracy with only single-sequence input.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました