新たな研究が小児期の鉛曝露の真の影響解明に役立つ可能性(New study may help uncover childhood lead exposure’s true impact)

ad

2025-09-18 ワシントン大学セントルイス校

Web要約 の発言:
ワシントン大学セントルイス校らの研究は、子どもの鉛曝露が学力に与える影響を従来以上に強いと示した。ノースカロライナ州の約17万人の小学生データを解析したが、鉛検査はリスクが疑われる場合に限られ、35%が欠測していた。研究チームはCDC統計を参照し、ベイズ統計モデルで欠測値を補完。完成データで再解析すると、鉛曝露と標準テスト得点の関連が大幅に強化され、これまで過小評価されていたことが明らかになった。結果は、広範な検査拡充と曝露低減策の必要性を訴えるもので、公衆衛生や教育政策に直結する。成果は Bayesian Analysis に掲載。

新たな研究が小児期の鉛曝露の真の影響解明に役立つ可能性(New study may help uncover childhood lead exposure’s true impact)
Lead often makes its way into humans through aging, corroded pipes.

<関連情報>

無視できない欠測データを有するガウス・コピュラモデルにおける補助的限界分位数の利用 Using Auxiliary Marginal Quantiles for Gaussian Copula Models with Nonignorable Missing Data

Joseph Feldman, Jerome P. Reiter, Daniel R. Kowal
Bayesian Analysis  Advance Publication 1-29 (2025)
DOI:DOI: 10.1214/25-BA1551

Abstract

We present methods for parameter estimation and multiple imputation with Gaussian copula models in the presence of nonignorable missing data. Our approach uses Bayesian data integration to combine (i) a Gaussian copula model for all study variables and missingness indicators, which allows arbitrary marginal distributions, nonignorable missingness, and other dependencies, and (ii) auxiliary information in the form of marginal quantiles for some study variables. We prove that, remarkably, one only needs a small set of accurately-specified quantiles to estimate the copula correlation consistently. The remaining marginal distribution functions are inferred nonparametrically and jointly with the copula parameters using an efficient Markov Chain Monte Carlo (MCMC) algorithm. We also characterize the (additive) nonignorable missingness mechanism implied by the copula model. Simulations confirm the effectiveness of this approach for multivariate imputation with nonignorable missing data. We apply the model to analyze associations between lead exposure and end-of-grade test scores for 170,000 North Carolina students. Lead exposure has nonignorable missingness: children with higher exposure are more likely to be measured. We elicit marginal quantiles for lead exposure using statistics provided by the Centers for Disease Control and Prevention. Multiple imputation inferences under our model support stronger, more adverse associations between lead exposure and educational outcomes relative to complete case and missing-at-random analyses.**

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました