細胞の集団的な変化により健康から病気への転換点を解明(Tissue ‘tipping points’: How cells collectively switch from healthy to disease states)

ad

2025-11-03 ワシントン大学セントルイス校

ワシントン大学セントルイス校と清華大学の研究チームは、細胞が外部からの機械的刺激に応答して健康状態から疾患状態へと“集団転換”する臨界点(tipping point)を発見した。研究では、組織が水の凍結のように相転移的に変化し、線維化(fibrosis)が段階的ではなく急激に進行することを理論的モデルで示した。この物理的転換は細胞間の機械的通信が約100〜200μmの範囲で同期する際に起こるとされる。成果はPNAS誌に掲載され、線維化疾患の進行メカニズムを「力学的ネットワーク」の観点から説明し、細胞の生化学反応ではなく組織の物性を標的とする新しい治療戦略の可能性を示した。

細胞の集団的な変化により健康から病気への転換点を解明(Tissue ‘tipping points’: How cells collectively switch from healthy to disease states)
WashU researchers have discovered why cells communicate mechanically through the extracellular matrix, but only within a critical distance of approximately 100-200 micrometers. (Image: Wenyu Kong/Tsinghua University)

<関連情報>

繊維リクルートメントは、マトリックス介在型組織リモデリングにおける臨界細胞間隔での細胞分極の相転移を促進する Fiber recruitment drives a phase transition of cell polarization at a critical cell spacing in matrix-mediated tissue remodeling

Xiangjun Peng, Yuxuan Huang, Wenyu Kong, +3 , and Guy M. Genin
Proceedings of the National Academy of Sciences  Published:October 3, 2025
DOI:https://doi.org/10.1073/pnas.2514995122

Significance

This study reveals how cell-to-cell mechanotransduction through extracellular matrix (ECM) determines outcomes in a wide range of physiological and pathological processes. Using bio-chemo-mechanical methods, we dissect how cell spacing and shape interact with nonlinear ECM mechanics to determine how cells influence the contractility and polarization of their neighbors. This provides a mechanistic explanation for the concepts of optimal ECM rigidity and paratensile signaling. In addition to filling a critical gap in our understanding of cellular interactions in fibrosis and wound healing, results offer insights into how cell spreading facilitates long-range force transmission within tissues in disease and health, and offer insight into how manipulating the physical microenvironment may enable more effective treatments for fibrosis, cancer progression, and chronic wounds.

Abstract

Biological tissues exhibit sharp phase transitions where cells collectively transition from disordered to ordered states at critical densities. We demonstrate through bio-chemo-mechanical modeling that this emergent behavior arises from a nonmonotonic dependence on nonlinear extracellular matrix (ECM) mechanics: mechanical communication between cells is optimized at intermediate stiffness values where cells can both generate sufficient forces and create strain-stiffened tension bands in the ECM. This balance establishes a critical cell spacing threshold for cell–cell communication (100 to 200 μm) that is conserved across experimental observations for a broad range of cell types and collagen densities. Our model reveals that the critical stretch ratio at which fibrous networks transition from compliant to strain-stiffening governs this threshold through the formation of tension bands between neighboring cells. These mechanical communication networks drive collective phase transition in tissue condensation when cell density exceeds an effective percolation threshold. Our model explains how microscale cell–ECM interactions control emergent mechanical properties in biological systems and offers insight both into the physics of inhomogeneous materials under active stress, and into potential mechanical interventions for wound healing and fibrotic disorders.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました