乳がん再発の鍵となる細胞抵抗メカニズムを発見(Relapses of Breast Cancer: Discovery of a Key Cellular Resistance Mechanism)

ad

2025-11-06 フランス国立科学研究センター(CNRS)

CNRS・キュリー研究所・パリ大学のチームは、治療抵抗性で再発を引き起こす「持続生存(persister)細胞」の分子機構を解明した。トリプルネガティブ乳がんでは、治療後も一部の腫瘍細胞が可逆的に薬剤耐性状態へ入り、再発の原因となる。解析の結果、これらの細胞は患者や治療法を問わず共通の転写プログラムをもち、FOSL1タンパク質が耐性のON/OFFを切り替える“スイッチ”として機能していた。非遺伝的・可逆的な適応により、一時的に生存後再び感受性を取り戻すことが確認された。成果は再発予防型治療・バイオマーカー開発の基盤となる。研究はCancer Research誌に掲載。

乳がん再発の鍵となる細胞抵抗メカニズムを発見(Relapses of Breast Cancer: Discovery of a Key Cellular Resistance Mechanism)
Breast tumour in an animal. The cells are labelled in blue and the keratin 8 molecules in orange. © Equipe Vallot – Institut Curie

<関連情報>

トリプルネガティブ乳がんにおける薬剤耐性持続細胞の特徴解析により、治療と患者間で共有される持続プログラムが特定される Characterization of Drug-Tolerant Persister Cells in Triple-Negative Breast Cancer Identifies a Shared Persistence Program across Treatments and Patients Available to Purchase

Léa Baudre;Gregoire Jouault;Pacôme Prompsy;Melissa Saichi;Sarah Gastineau;Christophe Huret;Laura Sourd;Ahmed Dahmani;Elodie Montaudon;Florent Dingli;Damarys Loew;Elisabetta Marangoni;Justine Marsolier;Céline Vallot
Cancer Research  Published:November 06 2025
DOI:https://doi.org/10.1158/0008-5472.CAN-25-0995

Abstract

Acquisition of resistance to anti-cancer therapies is a multistep process initiated by the survival of drug-tolerant persister cells. Accessibility of drug-tolerant persister cells in patients is limited, which has hindered understanding the mechanisms driving their emergence. Here, using multiple patient-derived models to isolate persister cells, we showed that these cells are transcriptionally plastic in vivo and return to a common treatment naïve-like state upon relapse, regardless of treatment. Hallmarks of the persister state in TNBC across treatment modalities included high expression of basal keratins together with activation of stress response and inflammation pathways. These hallmarks were also activated in HER2+ breast and lung cancer cells in response to targeted therapies. Analysis of gene regulatory networks identified AP-1, NF-κB and IRF/STAT as the key drivers of this hallmark persister state. Functionally, FOSL1, an AP-1 member, drove cells to the persister state by binding enhancers and reprogramming the transcriptome of cancer cells. On the contrary, cancer cells without FOSL1 had a decreased ability to reach the persister state. By defining hallmarks of TNBC persistence on multiple therapies, this study provides a resource to design effective combination therapeutic strategies that limit resistance.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました