空気を堆肥に変換する河川のエコシステムが持続可能な窒素生産の鍵を握る (River ecosystem that converts air to fertilizer could hold clues for sustainable nitrogen production)

ad

2025-09-15アメリカ合衆国・ローレンスリバモア国立研究所 (LLNL)

カリフォルニアの川の生態系を調べた研究で、空気中の窒素(N₂)を取り込んで「生き物が利用できる形の窒素化合物」に変える能力を持つバクテリアと、それが藻類に共生する「プロト細胞内共生体」のような構造が発見された。具体的には、川底の緑藻類に付着するストリーマー(フィラメント状藻類)の表面に、珪藻(単細胞藻類)が群体を作り、その内部に窒素固定バクテリアが棲んでいた。実験では、重同位体の炭素・窒素を用いて、これらバクテリアが大気中の窒素を有機窒素に変え、それを藻類が取り込む過程を「ナノスケール二次イオン質量分析法(NanoSIMS)」で可視化。こうした自然の窒素固定の仕組みを再現・応用できれば、現在世界の農業で使われている化学肥料の大量生産に必要なエネルギーを大幅に削減し、環境負荷も減らせる可能性がある。論文は Proceedings of the National Academy of Sciences で発表された。

<関連情報>

窒素固定原始細胞小器官の生態系への影響 Ecosystem consequences of a nitrogen-fixing proto-organelle

Jane C. Marks, Michael C. Zampini, Raina Fitzpatrick, +11 , and Mary E. Power
Proceedings of the National Academy of Sciences  Published:September 8, 2025
DOI:https://doi.org/10.1073/pnas.2503108122

空気を堆肥に変換する河川のエコシステムが持続可能な窒素生産の鍵を握る (River ecosystem that converts air to fertilizer could hold clues for sustainable nitrogen production)

Significance

In major evolutionary leaps with widespread ecological consequences, mitochondria and chloroplast organelles arose from bacteria that had become endosymbionts inside eukaryotic host cells. Recent studies demonstrate endosymbiosis of N-fixing bacteria into algal hosts, but the ecological significance of such partnerships remains unexplored. In a temperate river ecosystem, we show that much of the carbon fixed by the diatom Epithemia is allocated to its nitrogen-fixing endosymbiont, fueling most summertime N-fixation in the river and accelerating energy flow up the food web. Despite selective and voracious grazing on Epithemia by riverine algivores, these diatoms can dominate summertime algal biomass in unpolluted western rivers, likely supported by abundant nitrogen from their endosymbiotic “proto-organelles.”

Abstract

Microscale symbioses can be critical to ecosystem functions, but the mechanisms of these interactions in nature are often cryptic. Here, we use a combination of stable isotope imaging and tracing to reveal carbon (C) and nitrogen (N) exchanges among three symbiotic primary producers that fuel a salmon-bearing river food web. Bulk isotope analysis, nanoSIMS (secondary ion mass spectrometry) isotope imaging, and density centrifugation for quantitative stable isotope probing enabled quantification of organism-specific C- and N-fixation rates from the subcellular scale to the ecosystem. After winters with riverbed-scouring floods, the macroalga Cladophora glomerata uses nutrients in spring runoff to grow streamers up to 10 m long. During summer flow recession, riverine N concentrations wane and Cladophora becomes densely epiphytized by three species of Epithemia, diatoms with N-fixing endosymbionts (proto-organelles) descended from a free-living Crocosphaera cyanobacterium. Over summertime epiphyte succession on Cladophora, N-fixation rates increased as Epithemia spp. became dominant, Cladophora C-fixation declined to near zero, and Epithemia C-fixation increased. Carbon transfer to caddisflies grazing on Cladophora with high densities of Epithemia was 10-fold higher than C transfer to caddisflies grazing Cladophora with low Epithemia loads. In response to demand for N, Epithemia allocates high levels of newly fixed C to its endosymbiont. Consequently, these endosymbionts have the highest rates of C and N accumulation of any taxon in this tripartite symbiosis during the biologically productive season and can produce one of the highest areal rates of N-fixation reported in any river ecosystem.

生物環境工学
ad
ad
Follow
ad
タイトルとURLをコピーしました