光を使って脳と通信するワイヤレスデバイスを開発(Wireless device ‘speaks’ to the brain with light)

ad

2025-12-08 ノースウェスタン大学

ノースウェスタン大学の研究チームは、脳に光で信号を送ることのできる完全ワイヤレスの光学神経刺激デバイスを開発した。今回の装置は、柔軟で薄いフィルム状構造に LED 光源と無線給電システムを統合したもので、脳深部の標的領域へ精密に光刺激を与えられる点が特長である。従来の光遺伝学では光ファイバーを頭部に固定する必要があり、行動を制限したり脳組織を傷つけたりする問題があった。本デバイスは外部電源からの RF ワイヤレス給電によりケーブルを完全に排除し、自由行動下の動物において脳活動の制御と行動変化の計測を同時に実現した。研究では、報酬系に関わる脳領域を光刺激することで、行動選択が変化する様子も確認された。小型・軽量・柔軟かつ低消費電力のため、さらなる多チャンネル化やヒト応用への発展可能性も期待される。成果は Nature Electronics に掲載された。

光を使って脳と通信するワイヤレスデバイスを開発(Wireless device ‘speaks’ to the brain with light)
Roughly the size of a postage stamp and thinner than a credit card, the new device is less invasive than what had been developed previously by the team. Instead of extending into the brain through a tiny cranial defect, the new soft, flexible device conforms to the surface of the skull and shines light through the bone. Photo by Mingzheng Wu of the Rogers Research Group

<関連情報>

パターン化された無線経頭蓋光遺伝学が人工知覚を生成する Patterned wireless transcranial optogenetics generates artificial perception

Mingzheng Wu,Yiyuan Yang,Jinglan Zhang,Andrew I. Efimov,Xiuyuan Li,Kaiqing Zhang,Yue Wang,Kevin L. Bodkin,Mohammad Riahi,Jianyu Gu,Glingna Wang,Minsung Kim,Liangsong Zeng,Jiaqi Liu,Lauren H. Yoon,Haohui Zhang,Sara N. Freda,Minkyu Lee,Jiheon Kang,Joanna L. Ciatti,Kaila Ting,Stephen Cheng,Xincheng Zhang,He Sun,… John A. Rogers
Nature Neuroscience  Published:08 December 2025
DOI:https://doi.org/10.1038/s41593-025-02127-6

Abstract

Synthesizing perceivable artificial neural inputs independent of typical sensory channels remains a fundamental challenge in developing next-generation brain-machine interfaces. Establishing a minimally invasive, wirelessly effective and miniaturized platform with long-term stability is crucial for creating research methods and clinically meaningful biointerfaces capable of mediating artificial perceptual feedback. Here we demonstrate a miniaturized, fully implantable transcranial optogenetic neural stimulator designed to generate artificial perceptions by patterning large cortical ensembles wirelessly in real time. Experimentally validated numerical simulations characterized light and heat propagation, whereas neuronal responses were assessed by in vivo electrophysiology and molecular methods. Cue discrimination during operant learning demonstrated the wireless genesis of artificial percepts sensed by mice, where spatial distance across large cortical networks and sequential order-based analyses of discrimination predicted performance. These conceptual and technical advances expand understanding of artificially patterned neural activity and its perception by the brain to guide the evolution of next-generation all-optical brain-machine communication.

 

個体および社会行動の光遺伝学的研究のためのワイヤレス多国間デバイス Wireless multilateral devices for optogenetic studies of individual and social behaviors

Yiyuan Yang,Mingzheng Wu,Abraham Vázquez-Guardado,Amy J. Wegener,Jose G. Grajales-Reyes,Yujun Deng,Taoyi Wang,Raudel Avila,Justin A. Moreno,Samuel Minkowicz,Vasin Dumrongprechachan,Jungyup Lee,Shuangyang Zhang,Alex A. Legaria,Yuhang Ma,Sunita Mehta,Daniel Franklin,Layne Hartman,Wubin Bai,Mengdi Han,Hangbo Zhao,Wei Lu,Yongjoon Yu,Xing Sheng,… John A. Rogers
Nature Neuroscience  Published:10 May 2021
DOI:https://doi.org/10.1038/s41593-021-00849-x

An Author Correction to this article was published on 07 September 2022
This article has been updated

Abstract

Advanced technologies for controlled delivery of light to targeted locations in biological tissues are essential to neuroscience research that applies optogenetics in animal models. Fully implantable, miniaturized devices with wireless control and power-harvesting strategies offer an appealing set of attributes in this context, particularly for studies that are incompatible with conventional fiber-optic approaches or battery-powered head stages. Limited programmable control and narrow options in illumination profiles constrain the use of existing devices. The results reported here overcome these drawbacks via two platforms, both with real-time user programmability over multiple independent light sources, in head-mounted and back-mounted designs. Engineering studies of the optoelectronic and thermal properties of these systems define their capabilities and key design considerations. Neuroscience applications demonstrate that induction of interbrain neuronal synchrony in the medial prefrontal cortex shapes social interaction within groups of mice, highlighting the power of real-time subject-specific programmability of the wireless optogenetic platforms introduced here.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました