スキャンで前立腺放射線治療の早期変化を検出(Scans detect early prostate radiotherapy changes)

ad

2025-12-11 エディンバラ大学

英エディンバラ大学の研究チームは、前立腺がん放射線治療の初期段階で起こる変化を、高度な画像診断技術によって検出できることを明らかにした。MRIなどのスキャン画像を解析することで、治療開始後まもない時点で腫瘍組織や周辺組織に生じる微細な変化を捉えることが可能となり、治療効果や副作用を早期に予測できる可能性が示された。この手法により、患者ごとに治療計画を最適化し、不要な副作用を抑えつつ効果的な放射線治療を行う個別化医療の実現が期待される。研究成果は、前立腺がん治療の精度向上と患者の生活の質改善に貢献する。

<関連情報>

正常組織イメージングバイオマーカーを用いて前立腺癌放射線治療における直腸毒性を最小限に抑えるための適応的再計画の最適な時期を特定する Identifying the optimal time point for adaptive re-planning in prostate cancer radiotherapy to minimise rectal toxicity using normal tissue imaging biomarkers

Zhuolin Yang ∙ David J. Noble ∙ Sarah Elliot ∙ … ∙ Duncan B McLaren ∙ Neil G. Burnet ∙ William H. Nailon
Physics and Imaging in Radiation Oncology  Published:October 8, 2025
DOI:https://doi.org/10.1016/j.phro.2025.100850

Highlights

  • Radiomic features before and during treatment predict late rectal bleeding.
  • Radiomic features from week 1 showed strongest standalone predictive performance.
  • Week 3 was optimal for re-planning in patients treated with 74 Gy in 37 fractions.
  • Radiomics enable biologically informed adaptation beyond anatomy-based methods.
  • Analysis includes both standard and moderately hypofractionated treatment regimens.

Graphical abstract

スキャンで前立腺放射線治療の早期変化を検出(Scans detect early prostate radiotherapy changes)

Abstract

Background and purpose

Adaptive radiotherapy (ART) in prostate cancer (PCa), although not yet standard practice, is typically triggered by inter-fractional anatomical changes that emerge progressively during treatment. This study investigates whether radiomics extracted before and during treatment can identify the optimal time point for re-planning, with the goal of reducing late rectal bleeding.

Materials and methods

This study included 187 PCa patients from the single-centre, prospectively collected VoxTox dataset (UK-CRN-ID-13716), treated with image-guided radiotherapy using TomoTherapy and daily MVCT. Patients received either 74 Gy in 37 fractions (N = 110) or 60 Gy in 20 fractions (N = 77). Radiomic features were extracted from pre-treatment planning CTs and daily MVCTs. Grade ≥ 1 rectal bleeding was assessed at 2 years post-treatment using CTCAE v4.03. Two analysis strategies were employed: a separate analysis, where weekly features were evaluated independently; and a cumulative analysis, which progressively incorporated features from previous weeks. Logistic regression models with elastic net penalty were trained and evaluated using AUC.

Results

In both groups, week 1 provided the highest standalone predictive performance (test AUC = 0.766 for 74 Gy; 0.734 for 60 Gy). In the cumulative analysis, week 3 was optimal for the 74 Gy group (test AUC = 0.767), balancing performance and timing. For the 60 Gy group, week 1 remained optimal but suffered from reduced generalisability (test AUC = 0.643).

Conclusions

Radiomic analysis of daily imaging can support early, proactive ART in PCa, offering a personalised strategy to reduce late rectal bleeding beyond conventional anatomy-based approaches.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました