大豆の病害抵抗性を媒介するイソフラボン6-ヒドロキシラーゼの仕組みを解明(Chinese Scientists Reveal How Isoflavone 6-Hydroxylase Mediates Soybean Resistance to Phytophthora sojae)

ad

2025-12-12 中国科学院(CAS)

中国科学院(CAS)の研究グループは、ダイズの主要イソフラボノイドであるグリシテインの生合成経路を初めて明確にし、その産生がPhytophthora sojae に対する病害抵抗性を左右することを明らかにした。メタボロームGWAS解析により、シトクロムP450酵素 GmIF6H1 を同定し、本酵素がダイゼインのA環6位水酸化を触媒することで、グリシテインが合成されることを実証した。この成果は、従来のフラバノン中心モデルを覆すものである。さらに、GmIF6H1のアミノ酸置換が栽培化過程で選択され、栽培ダイズではグリシテイン量が低下していることを示した。グリシテインは事前防御物質として、誘導性防御物質であるグリセオリンと協調的に機能し、病原菌抵抗性を最適化している。本研究は、病害抵抗性ダイズ育種の新たな分子基盤を提供する成果であり、PNAS誌に掲載された。

大豆の病害抵抗性を媒介するイソフラボン6-ヒドロキシラーゼの仕組みを解明(Chinese Scientists Reveal How Isoflavone 6-Hydroxylase Mediates Soybean Resistance to Phytophthora sojae)
Mechanistic analysis of GmIF6H1, a newly identified component of the soybean isoflavone biosynthetic pathway, in regulating resistance to Phytophthora sojae (Image by IGDB)

<関連情報>

イソフラボン6-ヒドロキシラーゼによって制御されるグリシテインとグリセオリンのバランスが、ダイズにPhytophthora sojaeに対する耐性を与える A balance between glycitein and glyceollins governed by isoflavone 6-hydroxylase confers soybean resistance to Phytophthora sojae

Qilin Yang, Yining Wang, Xindan Xu, +8 , and Guodong Wang
Proceedings of the National Academy of Sciences  Published:December 11, 2025
DOI:https://doi.org/10.1073/pnas.2525627122

Significance

In this study, we identified GmIF6H1 (Glyma.11g108300) as a key gene for glycitein biosynthesis in soybean, catalyzing daidzein 6-hydroxylation rather than the previously assumed liquiritigenin route. Infection by Phytophthora sojae induced glycitein release, yet both knockout and overexpression of GmIF6H1 increased susceptibility, underscoring the need for precise regulation. We further revealed a complementary daidzein-based defense strategy in soybean: glycitein-type isoflavonoids (via daidzein 6-hydroxylation) as phytoanticipins and glyceollins (via daidzein 2’-hydroxylation) as phytoalexins. These findings not only clarify the biosynthetic origin of the glycitein but also highlight its pivotal contribution to soybean pathogen resistance.

Abstract

Isoflavonoids, predominantly found in legumes, are specialized metabolites with antioxidant properties that benefit both plant resilience and human health. Using metabolic genome-wide association studies (mGWAS), we identified the cytochrome P450 gene (Glyma.11g108300), GmIF6H1, as a key determinant of glycitein biosynthesis in soybean [Glycine max (L.) Merr.]. Biochemical assays together with in planta stable-isotope tracing demonstrated that GmIF6H1 catalyzes the 6-hydroxylation of daidzein, establishing a previously unrecognized and predominant biosynthetic route for glycitein. A single amino acid substitution in GmIF6H1 accounts for the domestication-associated reduction of glycitein-type isoflavonoids. Upon Phytophthora sojae infection, (malonyl)glycitins undergo sustained deglycosylation to release glycitein aglycone, underscoring its defensive role. Strikingly, both loss- and gain-of-function alleles increase susceptibility to P. sojae, indicating that precise tuning of GmIF6H1 expression is essential for effective resistance. Metabolite profiling further reveals complementary daidzein-centered defense strategies: Glycitein-type isoflavonoids (via daidzein 6-hydroxylation) function as phytoanticipins, whereas glyceollins (via daidzein 2’-hydroxylation) act as inducible phytoalexins. Together, these findings clarify the biosynthetic origin of the glycitein and underscore the synergistic action of glycitein and glyceollins in pathogen resistance, offering opportunities for engineering disease-resilient soybean cultivars.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました