アオウキクサがナノプラスチック汚染に高い耐性を持つことを発見(Scientists Find Common Duckweed Highly Resilient to Nanoplastic Pollution)

ad

2026-01-07 中国科学院(CAS)

本研究は、中国科学院・武漢植物園の研究チームが、淡水植物であるウキクサがナノプラスチック汚染に対して高い耐性を持つことを明らかにしたものである。生理・生化学解析、単一核RNAシーケンス、ナノ粒子追跡解析を組み合わせた結果、ナノプラスチック曝露により成長速度や根長の低下、光合成色素の減少が生じるものの、全体のバイオマスには大きな影響がないことが示された。これらの影響は回復期間後に大部分が可逆的であり、ウキクサの高い回復力が確認された。酸化ストレス指標は曝露・回復の両段階で上昇し、細胞障害の主要因であることが示唆された。さらに単一核RNA解析により、葉肉細胞や維管束鞘細胞で代謝・ストレス応答経路の顕著な転写変化が確認され、細胞型特異的な適応機構が明らかになった。ウキクサはナノプラスチックを迅速に吸収・排出する解毒機構を備え、汚染水域での生存戦略を有することが示された。

<関連情報>

ウキクサにおけるナノプラスチック:単一細胞反応と回復 Nanoplastics in Duckweed: Single-Cell Responses and Recovery

Wenke Yuan,Elvis Genbo Xu,Dong Zhu,Weihong Zhang,Wenzhi Liu,Fazel Abdolahpur Monikh,Li Lin,Lianzhen Li,Hans-Peter Grossart,Yuyi Yang,Matthias C. Rillig,and Willie J. G. M. Peijnenburg
ACS Nano  Published: December 16, 2025
DOI:https://doi.org/10.1021/acsnano.5c15989

Abstract

 

アオウキクサがナノプラスチック汚染に高い耐性を持つことを発見(Scientists Find Common Duckweed Highly Resilient to Nanoplastic Pollution)

Micro- and nanoplastics have emerged as critical contaminants in aquatic ecosystems due to their small size, persistent nature, and potential for bioaccumulation. Nanoplastics are particularly concerning because they can be widespread in aquatic environments and ingested by aquatic organisms, posing potential risks to ecological health and environmental sustainability. However, the response and recovery of aquatic plants to nanoplastics, as well as the cell-specific molecular mechanisms underlying these processes, remain unclear. By integrating single-cell transcriptomics, enzymatic assays, and europium-doped nanoplastic tracing, we comprehensively investigated the response of duckweed to polystyrene nanoplastics at environmentally relevant and high doses over exposure and recovery phases. Nanoplastics exposure reduced plant reproduction and root length by inducing oxidative damage, with partial recovery after removal. Single-nucleus RNA sequencing revealed cell-type-specific responses of duckweed to nanoplastics, particularly in mesophyll, mestome sheath, epidermis, and parenchyma cells. Interestingly, recovery triggered a greater number of differentially expressed genes mechanistically linked to carbon metabolism, membrane transport, and stress-responsive pathways. Nanotracer quantification demonstrated root/frond absorption and 36.8–51.4% postrecovery excretion. These multiscale lines of evidence decipher the molecular strategies of duckweed to nanoplastics at single-cell resolution, providing mechanistic insights into the interactions between aquatic plants and nanoplastics contamination.

生物環境工学
ad
ad
Follow
ad
タイトルとURLをコピーしました