がんと闘うために、科学者は細胞タンパク質をカスタマイズする(To Fight Cancer, Scientists Customize Cellular Protein)

ad

2026-01-08  マサチューセッツ大学アマースト校

マサチューセッツ大学アマースト校の研究チームは、細胞内タンパク質を分子レベルで「カスタマイズ」し、がん細胞を狙い撃ちする新たな治療アプローチを開発した。研究では、細胞の機能を左右するタンパク質に人工的な修飾を加えることで、がん細胞の増殖や生存に必須な分子経路を選択的に制御する手法を提示している。従来のがん治療は、正常細胞にも影響を及ぼしやすいという課題があったが、本手法はがん関連タンパク質の働きを精密に調節できる点が特徴で、副作用低減の可能性が示された。研究者らは、この技術が将来的に個別化医療や難治性がんの新治療法につながると期待しており、基礎生物学と医療応用を橋渡しする成果として注目されている。

<関連情報>

人工細胞由来小胞(ACDV)を介した細胞表面への機能性タンパク質の組み込みによる細胞膜リプログラミング Incorporation of Functional Proteins on Cellular Surfaces via Artificial Cell-Derived Vesicles (ACDVs) for Plasma Membrane Reprogramming

Shuai Gong,Jingyi Qiu,Fangying Huang,Jithu Krishna,Yasin Alp,Eric Strieter,and S. Thayumanavan
Journal of the American Chemical Society  Published: January 15, 2026
DOI:https://doi.org/10.1021/jacs.5c17697

Abstract

 

がんと闘うために、科学者は細胞タンパク質をカスタマイズする(To Fight Cancer, Scientists Customize Cellular Protein)

The complexity of cell surface proteins and their undruggable nature remain major challenges for functional modulation strategies such as small-molecule inhibition. Here, we present an artificial cell-derived vesicle (ACDV) approach that enables the direct delivery of functional proteins onto the cell surface, bypassing the need for genetic manipulation. This programmable system converts live cells into dynamic biointerfaces capable of introducing catalytic and signaling regulation, providing a broadly applicable strategy for therapeutic cell surface engineering. These ACDVs thus represent a proof-of-concept platform for the delivery of functional biologics onto plasma membranes.

 

膜融合により細胞膜被覆ナノキャリアの容易な取り込みを促進 Membrane Fusion Drives Facile Uptake of Cell Membrane-Coated Nanocarriers

Jingyi Qiu,Shuai Gong,Yasin Alp,Jewel Medeiros,Emily Agnello,and S. Thayumanavan
ACS Nano  Published: June 16, 2025
DOI:https://doi.org/10.1021/acsnano.5c02888

Abstract

Endocytosis has been the bane of the intracellular delivery efficiency of nanoscale systems. A class of delivery systems, viz., cell membrane-coated nanoparticles (CMNPs), show efficacious and even cell-selective uptake. We were interested in investigating the mechanism of interaction between cells and CMNPs, especially in the context of endocytic uptake and endosomal escape. We find that CMNPs are mainly taken up through a membrane-fusion-driven uptake pathway, bypassing endosomal entrapment and directly delivering therapeutic cargo to the cytoplasm. This fusion mechanism results in a significant enhancement in the intracellular delivery efficiency of both hydrophobic small molecules and nucleic acids as the cargo. The cargo-agnostic increase in delivery efficacy suggests a broad impact of this delivery system in diverse therapeutic areas.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました