物理学者が保存場におけるパターン形成を記述する理論に取り組む(Physicists work toward theory to describe pattern formation in conserved fields)

ad

2024-08-23 カリフォルニア大学サンタバーバラ校(UCSB)

カリフォルニア大学サンタバーバラ校の研究者らは、保存された場でのパターン形成を説明する理論を目指しています。特に、e. coli細菌の分裂時に見られるような、非相互作用によるタンパク質の振動と波動パターンに注目しています。研究は、物質がエネルギーを消費する非平衡系における相分離と振動を説明するために、Cahn-Hilliard方程式とFitzHugh-Nagumoモデルを組み合わせたものです。このアプローチは、生物学的システムや合成材料でのパターン形成の理解を深めることが期待されています。

<関連情報>

保存された場の非相反的パターン形成 Nonreciprocal Pattern Formation of Conserved Fields

Fridtjof Brauns and M. Cristina Marchetti
Physical Review X  Published 19 April 2024
DOI:https://doi.org/10.1103/PhysRevX.14.021014

物理学者が保存場におけるパターン形成を記述する理論に取り組む(Physicists work toward theory to describe pattern formation in conserved fields)

Abstract

In recent years, nonreciprocally coupled systems have received growing attention. Previous work has shown that the interplay of nonreciprocal coupling and Goldstone modes can drive the emergence of temporal order such as traveling waves. We show that these phenomena are generically found in a broad class of pattern-forming systems, including mass-conserving reaction-diffusion systems and viscoelastic active gels. All these systems share a characteristic dispersion relation that acquires a nonzero imaginary part at the edge of the band of unstable modes and exhibit a regime of propagating structures (traveling wave bands or droplets). We show that models for these systems can be mapped to a common “normal form” that can be seen as a spatially extended generalization of the FitzHugh-Nagumo model, providing a unifying dynamical-systems perspective. We show that the minimal nonreciprocal Cahn-Hilliard equations exhibit a surprisingly rich set of behaviors, including interrupted coarsening of traveling waves without selection of a preferred wavelength and transversal undulations of wave fronts in two dimensions. We show that the emergence of traveling waves and their speed are precisely predicted from the local dispersion relation at interfaces far away from the homogeneous steady state. Our work, thus, generalizes previously studied nonreciprocal phase transitions and shows that interfaces are the relevant collective excitations governing the rich dynamical patterns of conserved fields.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました