新しいAIツールがより良い抗体治療法を特定(New AI Tool Identifies Better Antibody Therapies)

ad

2024-10-29 ジョージア工科大学

ジョージア工科大学の研究者は、深層学習を活用した新たなツール「AF2Complex」を開発し、COVID-19のスパイクタンパク質に結合する抗体を予測することに成功しました。このモデルは既知の抗原結合配列を用いて学習し、1,000種類の抗体の中から最適なものを90%の精度で特定しました。この技術は、COVID-19治療だけでなく、将来的な疾患治療の迅速な抗体開発にも応用が期待されています。

<関連情報>

抗原抗体相互作用のディープラーニングによる予測を改善 Improved deep learning prediction of antigen–antibody interactions

Mu Gao and Jeffrey Skolnick
Proceedings of the National Academy of Sciences  Published:October 3, 2024
DOI:https://doi.org/10.1073/pnas.2410529121

新しいAIツールがより良い抗体治療法を特定(New AI Tool Identifies Better Antibody Therapies)

Significance

Accurately predicting antibody–antigen interactions, which are central to the adaptive immune response, is a daunting task. This study explores the potential of a deep learning approach for computationally predicting these interactions. Using the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a test case, we demonstrate the capability of this computational approach to predict interactions between antibodies and various epitopes on the surface of the antigen. One particularly promising strategy involves using antibody sequences collected from B cell sequencing. The encouraging findings from this approach have significant implications for practical applications to antibody development.

Abstract

Identifying antibodies that neutralize specific antigens is crucial for developing effective immunotherapies, but this task remains challenging for many target antigens. The rise of deep learning–based computational approaches presents a promising avenue to address this challenge. Here, we assess the performance of a deep learning approach through two benchmark tests aimed at predicting antibodies for the receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Three different strategies for constructing input sequence alignments are employed for predicting structural models of antigen–antibody complexes. In our initial testing set, which comprises known experimental structures, these strategies collectively yield a significant top-ranked prediction for 61% of cases and a success rate of 47%. Notably, one strategy that utilizes the sequences of known antigen binders outperforms the other two, achieving a precision of 90% in a subsequent test set of ~1,000 antibodies, balanced between true and control antibodies for the antigen, albeit with a lower recall of 25%. Our results underscore the potential of integrating deep learning methods with single B cell sequencing techniques to enhance the prediction accuracy of antigen–antibody interactions.

有機化学・薬学
ad
ad
Follow
ad
タイトルとURLをコピーしました