どんな作業でも、この新しい外骨格AIコントローラーなら対応できる(No Matter the Task, This New Exoskeleton AI Controller Can Handle It)

ad

2024-11-13 ジョージア工科大学

ジョージア工科大学の研究者は、あらゆる脚の動作を支援できる汎用的なAI制御システムを開発しました。このシステムは、ジャンプやランジなどの動的動作から、開始・停止、ねじれ、曲がりなどの非構造的な動作まで、多様な人間の下肢運動をサポートします。特別な校正や訓練を必要とせず、ユーザーはデバイスを装着してすぐに使用可能です。この技術は、日常生活での移動支援や産業現場での重労働の補助、高齢者や脳卒中患者の移動能力向上など、幅広い応用が期待されています。

<関連情報>

生物学的関節モーメント推定による作業内容にとらわれない外骨格制御 Task-agnostic exoskeleton control via biological joint moment estimation

Dean D. Molinaro,Keaton L. Scherpereel,Ethan B. Schonhaut,Georgios Evangelopoulos,Max K. Shepherd & Aaron J. Young
Nature  Published:13 November 2024
DOI:https://doi.org/10.1038/s41586-024-08157-7

どんな作業でも、この新しい外骨格AIコントローラーなら対応できる(No Matter the Task, This New Exoskeleton AI Controller Can Handle It)

Abstract

Lower-limb exoskeletons have the potential to transform the way we move1,2,3,4,5,6,7,8,9,10,11,12,13,14, but current state-of-the-art controllers cannot accommodate the rich set of possible human behaviours that range from cyclic and predictable to transitory and unstructured. We introduce a task-agnostic controller that assists the user on the basis of instantaneous estimates of lower-limb biological joint moments from a deep neural network. By estimating both hip and knee moments in-the-loop, our approach provided multi-joint, coordinated assistance through our autonomous, clothing-integrated exoskeleton. When deployed during 28 activities, spanning cyclic locomotion to unstructured tasks (for example, passive meandering and high-speed lateral cutting), the network accurately estimated hip and knee moments with an average R2 of 0.83 relative to ground truth. Further, our approach significantly outperformed a best-case task classifier-based method constructed from splines and impedance parameters. When tested on ten activities (including level walking, running, lifting a 25 lb (roughly 11 kg) weight and lunging), our controller significantly reduced user energetics (metabolic cost or lower-limb biological joint work depending on the task) relative to the zero torque condition, ranging from 5.3 to 19.7%, without any manual controller modifications among activities. Thus, this task-agnostic controller can enable exoskeletons to aid users across a broad spectrum of human activities, a necessity for real-world viability.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました