研究者が抗生物質耐性菌のアキレス腱を発見(Researchers Uncover Achilles Heel of Antibiotic-Resistant Bacteria)

ad

2024-11-15 カリフォルニア大学サンディエゴ校(UCSD)

カリフォルニア大学サンディエゴ校の研究者たちは、抗生物質耐性菌が生存に必要なマグネシウムイオンを他の細菌や耐性菌同士で奪い合うことで成長に制限が生じ、耐性がある一方で優位性が制限されることを発見しました。この弱点を利用することで、薬品や有害な化学物質を使わずに耐性菌の抑制が可能になると考えられています。例えば、環境からマグネシウムを除去することで、耐性菌のみを選択的に抑える方法が期待されています。

<関連情報>

抗生物質耐性の生理的コスト: 細菌におけるリボソームの変異体からの洞察 Physiological cost of antibiotic resistance: Insights from a ribosome variant in bacteria

Eun Chae Moon, Tushar Modi, Dong-yeon D. Lee, Danis Yangaliev, […], and Gürol M. Süel
Science Advances  Published:15 Nov 2024
DOI:https://doi.org/10.1126/sciadv.adq5249

研究者が抗生物質耐性菌のアキレス腱を発見(Researchers Uncover Achilles Heel of Antibiotic-Resistant Bacteria)

Abstract

Antibiotic-resistant ribosome variants arise spontaneously in bacterial populations; however, their impact on the overall bacterial physiology remains unclear. We studied the naturally arising antibiotic-resistant L22* ribosome variant of Bacillus subtilis and identified a Mg2+-dependent physiological cost. Coculture competition experiments show that Mg2+ limitation hinders the growth of the L22* variant more than the wild type (WT), even under antibiotic pressure. This growth disadvantage of L22* cells is not due to lower ribosome abundance but rather due to reduced intracellular Mg2+ levels. Coarse-grained elastic-network modeling of ribosome conformational dynamics suggests that L22* ribosomes associate more tightly with Mg2+ when compared to WT. We combined the structural modeling and experimental measurements in a steady-state model to predict cellular adenosine 5′-triphosphate (ATP) levels, which also depend on Mg2+. Experiments confirmed a predicted ATP drop in L22* cells under Mg2+ limitation, while WT cells were less affected. Intracellular competition for a finite Mg2+ pool can thus suppress the establishment of an antibiotic-resistant ribosome variant.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました