コレステロールが体内で結晶化する様子を初めて撮影 (UH Professors First to Take Images of How Cholesterol Forms Crystals in the Body)

ad

2025-03-11 ヒューストン大学

コレステロールが体内で結晶化する様子を初めて撮影 (UH Professors First to Take Images of How Cholesterol Forms Crystals in the Body)
A series of images captures how (A) thin and (B) thick cholesterol crystals grow over time inside a tiny fluid device.

ヒューストン大学の研究チームは、コレステロール結晶の形成プロセスをリアルタイムで観察することに成功しました。心疾患や胆石の原因となるコレステロール結晶は、その成長メカニズムが十分に解明されていませんでした。研究では、水とイソプロパノールの混合溶媒を用いた実験環境を構築し、結晶が層状に成長し、層間の相互作用により成長速度が変化することを明らかにしました。この発見は、コレステロール結晶の成長を抑制する新たな治療法の開発に貢献する可能性があります。

<関連情報>

コレステロール一水和物の結晶化を直接観察 Direct observation of cholesterol monohydrate crystallization

Dipayan Chakraborty, Wenchuan Ma, Xiqu, +4 , and Jeffrey D. Rimer
Proceedings of the National Academy of Sciences  Published:March 3, 2025
DOI:https://doi.org/10.1073/pnas.2415719122

Significance

Cholesterol-related diseases affect a large fraction of the world’s population with significant associated health care costs, yet relatively few studies have explored mechanistic aspects of cholesterol crystallization. Here, we use alcohols as analogues of lipids to create facile environments for in situ characterization of cholesterol crystallization. Our findings reveal a classical mechanism of surface growth where interstep interactions enable a unique self-inhibition mode from merging layers that create macrosteps with much slower growth rates than those of elementary steps. These insights provide a foundation for future design of modifiers that selectively interact with crystal surfaces to cooperatively enhance growth inhibition, thus generating new opportunities to explore therapeutics that improve human health by counteracting the deleterious effects associated with cholesterol precipitation.

Abstract

Cholesterol crystallization is integral to the pathology of diseases such as atherosclerosis and gallstones, yet the relevant mechanisms of crystal growth have remained elusive. Here, we use a variety of in situ techniques to examine cholesterol monohydrate crystallization over multiple length scales. In this study, we first identified a biomimetic solvent to generate triclinic monohydrate crystals, while avoiding the formation of nonphysiological solvates and enabling crystallization at rates where the dynamics of surface growth could be captured in real time. Using a binary mixture of water and isopropanol, with the latter serving as a surrogate for lipids in physiological environments, we show that cholesterol monohydrate crystals grow classically by the nucleation and spreading of crystal layers. Time-resolved imaging confirms that layers are generated by dislocations and monomers incorporate into advancing steps after diffusion along the crystal surface and not directly from the solution. In situ atomic force microscopy (AFM) and microfluidics measurements concertedly reveal abundant macrosteps, which engender a self-inhibition mechanism that reduces the rate of crystal growth. This finding stands in contrast to numerous other systems, in which classical mechanisms lead to unhindered growth by spreading of single layers.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました