AIが駆動するタンパク質工学のための汎用戦略を発表(Scientists Unveil AI-Powered Universal Strategy for Protein Engineering)

ad

2025-07-08 中国科学院(CAS)

AIが駆動するタンパク質工学のための汎用戦略を発表(Scientists Unveil AI-Powered Universal Strategy for Protein Engineering)
AiCE as an AI-informed approach for protein engineering (Image by IGDB)

中国科学院遺伝・発生生物学研究所のGAO Caixia教授らが開発した「AiCE(AI-informed Constraints for protein Engineering)」は、構造・進化的制約を汎用的な逆フォールディングモデルに統合することで、特殊なAIモデルの訓練なしに高精度なタンパク質工学を可能にする新手法である。単一変異を予測する「AiCEsingle」は60の実験データで従来法を最大90%上回る精度を示し、構造制約だけでも37%の精度向上が確認された。また、相互作用を考慮した「AiCEmulti」は複数変異の予測精度と効率を高める。これらにより進化させた8種類のタンパク質は、次世代塩基編集ツール(enABE8e、enSdd6-CBE、enDdd1-DdCBE)として医療や分子育種に応用されている

<関連情報>

構造制約と進化制約を統合した逆フォールディングモデルによるタンパク質進化の進展 Advancing protein evolution with inverse folding models integrating structural and evolutionary constraints

Hongyuan Fei ∙ Yunjia Li ∙ Yijing Liu ∙ Jingjing Wei ∙ Aojie Chen ∙ Caixia Gao
Cell  Published:July 7, 2025
DOI:https://doi.org/10.1016/j.cell.2025.06.014

Highlights

  • Protein inverse folding models can effectively predict high-fitness mutations
  • Structural and evolutionary constraints improve AiCE-driven protein evolution
  • AiCE enables the development of precise and efficient base editors
  • AiCE supports engineering of proteins with varying sizes, structures, and functions

Summary

Protein engineering enables artificial protein evolution through iterative sequence changes, but current methods often suffer from low success rates and limited cost effectiveness. Here, we present AI-informed constraints for protein engineering (AiCE), an approach that facilitates efficient protein evolution using generic protein inverse folding models, reducing dependence on human heuristics and task-specific models. By sampling sequences from inverse folding models and integrating structural and evolutionary constraints, AiCE identifies high-fitness single and multi-mutations. We applied AiCE to eight protein engineering tasks, including deaminases, a nuclear localization sequence, nucleases, and a reverse transcriptase, spanning proteins from tens to thousands of residues, with success rates of 11%–88%. We also developed base editors for precision medicine and agriculture, including enABE8e (5-bp window), enSdd6-CBE (1.3-fold improved fidelity), and enDdd1-DdCBE (up to 14.3-fold enhanced mitochondrial activity). These results demonstrate that AiCE is a versatile, user-friendly mutation-design method that outperforms conventional approaches in efficiency, scalability, and generalizability.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました