ホログラフィック精密計測で細胞内構造を可視化(Holographic Precision, Super-Resolution Vision: Scientists Reveal the Hidden World of Vital Cellular Structures)

ad

2025-07-16 ニューヨーク大学(NYU)


Researchers peer inside biomolecular condensates—tiny, membraneless compartments within cells—using super-resolution microscopy (colorful visualization on left) and holographic microscopy (represented by concentric rings on right) to unlock the complex secrets of these essential cellular structures. Image credits: Julian von Hofe and Saumya Saurabh, PhD

NYUの研究チームは、ホログラフィック顕微鏡と超解像イメージングを融合させ、細胞内のバイオ分子凝縮体の成長や構成を高精度に観察する新技術を開発。これにより、RNA結合タンパク質などによる相転移過程や多価相互作用の動態をリアルタイムで可視化可能に。この手法は、がんや神経変性疾患、ウイルス感染などで異常を示す凝縮体の研究や創薬応用に貢献する新たな基盤技術となる。

<関連情報>

多価性が生体分子凝縮体の成長とダイナミクスを制御する Multivalency Controls the Growth and Dynamics of a Biomolecular Condensate

Julian von Hofe,Jatin Abacousnac,Mechi Chen,Moeka Sasazawa,Ida Javér Kristiansen,Soren Westrey,David G. Grier,and Saumya Saurabh
Journal of the American Chemical Society  Published: July 8, 2025
DOI:https://doi.org/10.1021/jacs.5c02947

Abstract

Biomolecular condensates are essential for cellular organization and function, yet understanding how chemical and physical factors govern their formation and dynamics has been limited by a lack of noninvasive measurement techniques. Conventional microscopy methods often rely on fluorescent labeling and substrate immobilization, which can perturb the intrinsic properties of condensates. To overcome these challenges, we apply label-free, contact-free holographic video microscopy to study the behavior of a condensate-forming protein in vitro. This technique enables rapid, high-throughput, and precise measurements of individual condensate diameters and refractive indexes, providing unprecedented insight into size distributions and dense-phase macromolecular concentrations over time. Using this method, we investigate the kinetics of droplet growth, aging, and equilibrium dynamics in the model condensate-forming protein PopZ. By systematically varying the concentration and valence of cations, we uncover how multivalent ions influence condensate organization and dynamics, a hypothesis we further test using super-resolution microscopy. Our findings reveal that PopZ droplet growth deviates from classical models such as Smoluchowski coalescence and Ostwald ripening. Instead, we show that condensate growth is consistent with gelation at the critical overlap concentration. Holographic microscopy offers significant advantages over traditional techniques, such as differential interference contrast microscopy, delivering reproducible measurements and capturing condensate dynamics with unparalleled precision. This work highlights the power of holographic microscopy to probe the material properties and mechanistic underpinnings of biomolecular condensates, paving the way for deeper insights into their roles in synthetic systems.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました