AI強化型心電図で危険な心ブロックを予測(AI-enhanced ECG can spot patients at risk of dangerous ‘heart block’ condition)

ad

2025-08-20 インペリアル・カレッジ・ロンドン (ICL)

インペリアル・カレッジ・ロンドンの研究チームは、一般的な心電図(ECG)から将来的に「完全房室ブロック(CHB)」発症リスクを予測できるAIモデル AIRE-CHB を開発した(JAMA Cardiology掲載)。CHBは心臓の電気信号伝導が途絶して失神や突然死を招く重大疾患だが、初期段階では断続的な異常のため診断が難しい。研究では米国ボストンの病院で収集された約110万件のECGを学習データに用い、英国バイオバンクの5万人以上で検証。その結果、従来の国際ガイドラインによる59%の予測精度に対し、AIRE-CHBは89%の正確さでリスク判定を実現し、ハイリスク群はロウリスク群の7~12倍CHBを発症しやすいことが示された。AIの導入により、早期発見と治療介入が可能となり、ペースメーカー装着などを通じて致死的不整脈や突然死リスクを大幅に減らせる可能性がある。

AI強化型心電図で危険な心ブロックを予測(AI-enhanced ECG can spot patients at risk of dangerous ‘heart block’ condition)Researchers have developed an AI tool that can help doctors predict who might develop a potentially fatal heart condition, just from an ECG.

<関連情報>

人工知能強化型心電図による完全心ブロックリスクの層別化 Artificial Intelligence–Enhanced Electrocardiography for Complete Heart Block Risk Stratification

Arunashis Sau, PhD; Henry Zhang, BSc; Joseph Barker, MRes; et al
JAMA Cardiology  Published:August 20, 2025
DOI:10.1001/jamacardio.2025.2522

Key Points

Question Can artificial intelligence–enhanced electrocardiography (AI-ECG) be used to identify individuals with risk of incident complete heart block (CHB)?

Findings This cohort study demonstrated that an AI-ECG risk model can predict the risk of incident CHB and is superior to traditional, guideline-based, ECG risk markers.

Meaning The AI-ECG model termed AIRE-CHB could be used to risk-stratify patients at risk of CHB to guide treatment decisions such as rhythm monitoring or empirical pacemaker implantation.

Abstract

Introduction Complete heart block (CHB) is a life-threatening condition that can lead to ventricular standstill, syncopal injury, and sudden cardiac death, and current electrocardiography (ECG)-based risk stratification (presence of bifascicular block) is crude and has limited performance. Artificial intelligence–enhanced electrocardiography (AI-ECG) has been shown to identify a broad spectrum of subclinical disease and may be useful for CHB.

Objective To develop an AI-ECG risk estimator for CHB (AIRE-CHB) to predict incident CHB.

Design, Setting, and Participants This cohort study was a development and external validation prognostic study conducted at Beth Israel Deaconess Medical Center and validated externally in the UK Biobank volunteer cohort.

Exposure Electrocardiogram.

Main Outcomes and Measures A new diagnosis of CHB more than 31 days after the ECG. AIRE-CHB uses a residual convolutional neural network architecture with a discrete-time survival loss function and was trained to predict incident CHB.

Results The Beth Israel Deaconess Medical Center cohort included 1 163 401 ECGs from 189 539 patients. AIRE-CHB predicted incident CHB with a C index of 0.836 (95% CI, 0.819-0.534) and area under the receiver operating characteristics curve (AUROC) for incident CHB within 1 year of 0.889 (95% CI, 0.863-0.916). In comparison, the presence of bifascicular block had an AUROC of 0.594 (95% CI, 0.567-0.620). Participants in the high-risk quartile had an adjusted hazard ratio (aHR) of 11.6 (95% CI, 7.62-17.7; P < .001) for development of incident CHB compared with the low-risk group. In the UKB UK Biobank cohort of 50 641 ECGs from 189 539 patients, the C index for incident CHB prediction was 0.936 (95% CI, 0.900-0.972) and aHR, 7.17 (95% CI, 1.67-30.81; P < .001).

Conclusions and Relevance In this study, a first-of-its-kind deep learning model identified the risk of incident CHB. AIRE-CHB could be used in diverse settings to aid in decision-making for individuals with syncope or at risk of high-grade atrioventricular block.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました