圧力ががん細胞を切り替える(Pressure flips the switch on cancer cells)

ad

2025-08-28 オックスフォード大学

オックスフォード大学と米メモリアル・スローン・ケタリングがんセンターの研究は、がん細胞が物理的圧迫を受けると「増殖」から「浸潤」へと性質を切り替える仕組みを明らかにした。ゼブラフィッシュのメラノーマモデルで、細胞は圧力下で神経細胞のように侵入的かつ薬剤耐性を持つ状態に転換。鍵となるのはDNAを曲げるタンパク質HMGB2で、クロマチン構造を変化させ遺伝子発現を切り替える。また細胞は内部骨格を再編し、LINC複合体を介して核を保護するケージを形成、圧迫によるDNA損傷を防ぐ。この柔軟な適応性により、分裂細胞を標的とする従来治療は効果が弱まりうる。研究は、がん治療において「力学的環境によるスイッチ切替」を新たな標的とする重要性を示唆している。

<関連情報>

機械的拘束がメラノーマの表現型可塑性を支配する Mechanical confinement governs phenotypic plasticity in melanoma

Miranda V. Hunter,Eshita Joshi,Sydney Bowker,Emily Montal,Yilun Ma,Young Hun Kim,Zhifan Yang,Laura Tuffery,Zhuoning Li,Eric Rosiek,Alexander Browning,Reuben Moncada,Itai Yanai,Helen Byrne,Mara Monetti,Elisa de Stanchina,Pierre-Jacques Hamard,Richard P. Koche & Richard M. White
Nature  Published:27 August 2025
DOI:https://doi.org/10.1038/s41586-025-09445-6

圧力ががん細胞を切り替える(Pressure flips the switch on cancer cells)

Abstract

Phenotype switching is a form of cellular plasticity in which cancer cells reversibly move between two opposite extremes: proliferative versus invasive states1,2. Although it has long been hypothesized that such switching is triggered by external cues, the identity of these cues remains unclear. Here we demonstrate that mechanical confinement mediates phenotype switching through chromatin remodelling. Using a zebrafish model of melanoma coupled with human samples, we profiled tumour cells at the interface between the tumour and surrounding microenvironment. Morphological analysis of interface cells showed elliptical nuclei, suggestive of mechanical confinement by the adjacent tissue. Spatial and single-cell transcriptomics demonstrated that interface cells adopted a gene program of neuronal invasion, including the acquisition of an acetylated tubulin cage that protects the nucleus during migration. We identified the DNA-bending protein HMGB2 as a confinement-induced mediator of the neuronal state. HMGB2 is upregulated in confined cells, and quantitative modelling revealed that confinement prolongs the contact time between HMGB2 and chromatin, leading to changes in chromatin configuration that favour the neuronal phenotype. Genetic disruption of HMGB2 showed that it regulates the trade-off between proliferative and invasive states, in which confined HMGB2high tumour cells are less proliferative but more drug-resistant. Our results implicate the mechanical microenvironment as a mechanism that drives phenotype switching in melanoma.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました