物語を聴くことが言語障害の診断に役立つ可能性(Listening to a Story Could Help Diagnose Language Disorders, UH Researcher Finds)

ad

2025-09-17 ヒューストン大学(UH)

ヒューストン大学のHeather Dial准教授らは、物語を聴く間の脳活動をEEGで記録し、言語障害の診断に応用できることを示した。アルツハイマー病や前頭側頭葉変性症に起因する進行性言語障害(PPA)患者を対象に、機械学習を用いて脳波データを解析したところ、PPAの3亜型を最大75%の精度で分類できた。従来の認知テストや脳画像検査は2〜4時間を要し患者に負担が大きいが、この方法は非侵襲的で短時間かつ患者に優しい診断法となる可能性がある。今後はアルゴリズム精度を高め、脳卒中後の言語障害評価などへの応用を目指す。成果はScientific Reportsに掲載。

<関連情報>

一次進行性失語症の鑑別診断における機械学習とEEGデータの時系列応答関数モデリングの応用 Application of machine learning and temporal response function modeling of EEG data for differential diagnosis in primary progressive aphasia

Heather Dial,Lokesha S. Pugalenthi,G. Nike Gnanateja,Junyi Jessy Li & Maya L. Henry
Scientific Reports  Published:12 August 2025
DOI:https://doi.org/10.1038/s41598-025-13000-8

物語を聴くことが言語障害の診断に役立つ可能性(Listening to a Story Could Help Diagnose Language Disorders, UH Researcher Finds)

Abstract

Primary progressive aphasia (PPA) is a neurodegenerative syndrome characterized by progressive decline in speech and/or language. There are three PPA subtypes with distinct speech-language profiles. Early diagnosis is essential for optimal provision of care but differential diagnosis by PPA subtype can be difficult and time consuming. We investigated the diagnostic utility of a novel electroencephalography (EEG)-based biomarker in conjunction with machine learning. Individuals with semantic, logopenic, or nonfluent/agrammatic variant PPA and healthy controls (n = 10 per group) listened to a continuous narrative while EEG responses were recorded. The speech envelope and linguistic features representing core language processes were extracted from the narrative speech and temporal response function (TRF) modeling was used to estimate the neural responses to these features. Although TRF modeling has shown promise for clinical applications, research is lacking regarding its diagnostic utility in populations like PPA. This study sought to provide preliminary evidence to address this gap. The resulting TRFs for channel Cz were used as input to machine learning algorithms for classification of PPA vs. healthy controls, three-way classification by PPA subtype, classification of a single PPA subtype relative to the other two (e.g., semantic vs. logopenic/nonfluent variant), and pairwise classification by PPA subtype. F1 scores were highest for the latter tasks (F1’s from 0.73 to 0.74), with better-than-chance classification in all tasks. Additional analyses determined that the TRF beta weights significantly improved classification over preprocessed EEG waveforms alone for all but one task (PPA vs. healthy controls). Our preliminary findings demonstrate the potential utility of this approach for differential diagnosis of PPA, warranting further investigation.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました