「ドロッププリンティング」による生体電子界面の構築技術を提案(Researchers Propose “Drop-printing” to Construct Conformal Bioelectronic Interfaces)

ad

2025-09-19 中国科学院(CAS)

中国科学院化学研究所の宋延林教授らは、「ドロップ・プリンティング」という新しい薄膜転写技術を提案した。従来の方法は生体組織のような凹凸のある3D表面に適用すると内部応力が発生し、金属回路やチップを損傷する課題があった。今回の手法では液滴が薄膜を拾い上げ、転写時に潤滑層を形成して局所的な滑りで応力を解放し、破損を防ぐ。これにより、光ファイバーや植物表面、微生物にナノ薄膜を包み込むことが可能となり、幹細胞膜の転写にも応用できた。さらに、動物実験でシリコン薄膜を神経や脳表面に転写し、赤外光で四肢運動を制御することに成功。生体適合性の高いバイオエレクトロニクスやフレキシブルデバイスの基盤技術として期待される。成果は『Science』に掲載。

<関連情報>

生体電子インターフェースのコンフォーマルラップのための動的応力解放を伴うドロップ印刷 Drop-printing with dynamic stress release for conformal wrap of bioelectronic interfaces

An Li, Wenjianlong Zhou, Huizeng Li, Wei Fang, […] , and Yanlin Song
Science  Published:11 Sep 2025
DOI:https://doi.org/10.1126/science.adw6854

Editor’s summary

Wrapping of thin-film bioelectronic devices onto three-dimensional surfaces can lead to residual stress and device failure. Li et al. overcame this challenge by using droplets of water, water-gelatin mixtures, or buffer solutions as a dynamic lubricating layer to enable conformal wrapping of fragile, nonstretchable films onto intricate substrates such as skin, polymers, cells, and nerves. The droplet lets the device slide across the target substrate, allowing it to conform to the underlying shape. The authors demonstrated drop printing onto nerves and brain tissue, enabling light-controlled neuromodulation. —Marc S. Lavine

Abstract

Bioelectronic interfaces demonstrate promising applications in health monitoring, medical treatment, and augmented reality. However, conformally wrapping these film devices onto three-dimensional surfaces often leads to stress-induced damage. We propose a “drop-printing” strategy that enables damage-free film transfer using a droplet. The droplet acts as a lubricating layer between the film and the target surface, facilitating local sliding during shape-adaptive deformation. This mechanism prevents in-plane film stretching and reduces stress concentration. Even nonstretchable and fragile films can be intactly and accurately wrapped onto delicate surfaces, such as microscale microorganisms and optical fibers. Two-micrometer-thick silicon films, without any stretchable engineering, can form conformal neural-electronic interfaces by being drop-printed on nerves and brain tissue. The interfaces achieve light-controlled in vivo neuromodulation with high spatiotemporal resolution.

生物工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました