AI生成のゲノムでがんの精密医療を前進(AI-generated genomes promise to advance precision cancer care)

ad

2025-10-08 トロント大学(U of T)

トロント大学とオンタリオがん研究所(OICR)の研究者は、AI生成モデル「OncoGAN」を開発し、実在データを使わずに腫瘍ゲノムを模擬的に生成することに成功した。乳がん・前立腺がん・膵がんなど8種類のがんに対応し、実際の遺伝変異パターンを再現。これにより患者情報の機密性を損なうことなく、診断アルゴリズムの性能向上が可能となる。さらに、合成ゲノムは「完全な真の配列情報(ground truth)」を持つため、新しい解析ツールの検証にも活用できる。成果は『Cell Genomics』誌に掲載。

<関連情報>

生成AIを用いた合成癌ゲノムのin silico生成 In silico generation of synthetic cancer genomes using generative AI

Ander Díaz-Navarro ∙ Xindi Zhang ∙ Wei Jiao ∙ Bo Wang ∙ Lincoln Stein
Cell Genomics  Published:August 12, 2025
DOI:https://doi.org/10.1016/j.xgen.2025.100969

Graphical abstract

AI生成のゲノムでがんの精密医療を前進(AI-generated genomes promise to advance precision cancer care)

Highlights

  • OncoGAN is a multimodel ensemble pipeline designed to generate synthetic cancer genomes
  • Key features like mutational signatures, genomic patterns, or CNA-SV are modeled
  • Features are simulated to match eight tumor-specific profiles
  • Synthetic donors have no access restrictions and preserve real donors’ privacy

Summary

Understanding how genomic alterations drive cancer is key to advancing precision oncology. To detect these alterations, accurate algorithms are used; however, due to privacy concerns, few deeply sequenced cancer genomes can be shared, limiting benchmarking and representing a major obstacle to the improvement of analytic tools. To address this, we developed OncoGAN, a generative AI model combining adversarial networks and variational autoencoders to create realistic synthetic cancer genomes. Trained on large-scale genomic datasets, OncoGAN accurately reproduces somatic mutations, copy number alterations, and structural variants across cancer types while preserving donors’ privacy. The synthetic genomes reflect tumor-specific mutational signatures and positional mutation patterns. Using DeepTumour, we validated the synthetic data’s fidelity, showing high concordance between generated and predicted tumors. Moreover, augmenting the training data with synthetic genomes improved DeepTumour’s accuracy, underscoring OncoGAN’s potential to generate shareable datasets with known ground truths for benchmarking and enhancement of cancer genome analysis tools.

細胞遺伝子工学
ad
ad
Follow
ad
タイトルとURLをコピーしました