植物が塩水環境で生存するための細胞メカニズムを発見(Scientists Find Cellular Key to Helping Plants Survive in Saltwater)

ad

2025-12-08 ニューヨーク大学 (NYU)

ニューヨーク大学(NYU)などの研究チームは、植物が塩ストレス環境、特に海水レベルの高塩濃度下で生存するために重要な細胞レベルの鍵となる仕組みを発見した。研究では、モデル植物シロイヌナズナを用い、塩分にさらされた際に細胞膜上の特定のイオン輸送体がどのように活性化され、ナトリウム排出とカリウム維持のバランスを保つかを詳細に解析した。その結果、植物の成長を左右するホルモン経路とイオン輸送体をつなぐ新たな細胞シグナル経路が明らかとなり、この経路を強化すると植物が海水レベルの塩分でも生き延びる能力が大幅に向上することが示された。この知見は、塩害による農地劣化が進行する世界で、より耐塩性の高い作物開発への道を拓く重要な成果である。研究者は、将来的に遺伝子改良や育種を通じて塩害に強い作物を実現できる可能性を強調している。

植物が塩水環境で生存するための細胞メカニズムを発見(Scientists Find Cellular Key to Helping Plants Survive in Saltwater)
Mangroves have evolved nearly 30 times over the last roughly 200 million years and can survive in saltwater. Photo credit: Pat Josse, CC0, via Wikimedia Commons

<関連情報>

細胞サイズの収斂進化によりマングローブの生息地への適応が可能になる Convergent evolution of cell size enables adaptation to the mangrove habitat

Guo-Feng Jiang ∙ Bo-Tao Qin ∙ Long-De Luo ∙ … ∙ Arezoo Dastpak ∙ Kevin A. Simonin ∙ Adam B. Roddy
Current Biology Published:December 8, 2025
DOI:https://doi.org/10.1016/j.cub.2025.11.036

Highlights

  • Salinity tolerance requires cells that can tolerate high turgor pressures
  • Mangroves have evolved repeatedly to have smaller cells with thicker cell walls
  • Smaller cells among mangroves are independent of genome size variation

Summary

Mangroves have evolved at least 27 times across ∼20 plant families to survive coastal environments characterized by high salinity, inundation, intense light, and strong winds.1,2 To survive these extreme conditions, mangroves exhibit a variety of physiological strategies to tolerate the low osmotic potentials associated with saltwater inundation.3,4,5,6,7,8 Because low osmotic potentials are counterbalanced by high turgor pressure, saltwater exposure exerts mechanical demands on cells. Analyzing 34 mangrove species and 33 closely related inland taxa from 17 plant families, we show that compared with their inland relatives, mangroves have unusually small leaf epidermal pavement cells and thicker cell walls, which together confer greater mechanical strength and tolerance to low osmotic potentials. However, mangroves do not exhibit smaller, more numerous stomata that enable higher photosynthetic rates,9,10,11 suggesting selection on biomechanical integrity rather than on gas exchange capacity. Notably, mangroves break the allometric scaling between the sizes of epidermal pavement cells and stomata typically seen in land plants,3,12 highlighting that strong selection in saline habitats can override genome size-mediated scaling rules. Phylogenetic comparative analyses revealed repeated convergent evolution of cell traits across independent transitions from inland to coastal habitats. These anatomical changes constitute a simple but effective adaptation to salt stress. Our findings underscore the role of biomechanics in driving convergent evolution of cell traits and suggest that manipulating cell size and wall properties could be a promising strategy for engineering salt-tolerant plants.

生物環境工学
ad
ad
Follow
ad
タイトルとURLをコピーしました