AI搭載ECGでファロー四徴症患者の長期心臓モニタリングを支援 (AI-Powered ECG Could Help Guide Lifelong Heart Monitoring for Patients With Repaired Tetralogy of Fallot)

ad

2026-02-19 マウントサイナイ医療システム(MSHS)

米マウントサイナイ医療センターの研究チームは、修復術後のファロー四徴症(TOF)患者に対し、人工知能(AI)を活用した心電図(ECG)解析が長期的な心機能モニタリングに有効である可能性を示した。TOF患者は手術後も不整脈や心不全リスクが続くため、生涯にわたる経過観察が必要とされる。本研究では、標準的な12誘導心電図データをAIモデルで解析し、将来的な心機能低下や右心室異常の兆候を高精度に予測できることを確認。非侵襲的かつ低コストな検査でリスク層別化が可能となり、個別化フォローアップや早期介入につながると期待される。

<関連情報>

修復されたファロー四徴症における心室リモデリングのための人工知能心電図モデルの開発と多施設検証 Development and multicentre validation of an artificial intelligence electrocardiogram model for ventricular remodeling in repaired tetralogy of Fallot

Son Q Duong, Akhil Vaid, Pengfei Jiang,, Yuval Bitterman, Yamini Krishnamurthy, I Min Chiu, Joshua Finer, Brian Cleary, Benjamin S Glicksberg, Ruchira Garg, Michael DiLorenzo, Mark Friedberg, Evan Zahn, Matthew Lewis, Michael Satzer, David Ouyang, Pierre Elias, Tal Geva, Sunil Ghelani, Brett R Anderson, Ali Zaidi, Rachel M Wald, Girish N Nadkarni, Joshua Mayourian
European Heart Journal: Digital Health  Published:2026 Feb 2
DOI:https://doi.org/10.1093/ehjdh/ztag015

Graphical Abstract

AI搭載ECGでファロー四徴症患者の長期心臓モニタリングを支援 (AI-Powered ECG Could Help Guide Lifelong Heart Monitoring for Patients With Repaired Tetralogy of Fallot)

Abstract

Aims

Periodic cardiac MRI (CMR) is recommended to identify adverse ventricular remodelling in repaired tetralogy of Fallot (TOF), but access to CMR is uneven, and compliance is poor. We developed a 12-lead electrocardiogram (ECG) artificial intelligence (AI) biomarker to identify CMR-quantified adverse biventricular remodelling in repaired TOF.

Methods and results

Six (1 train/5 external test) North American retrospective cohorts with paired ECG and CMR were included. The main outcome was a composite of ≥2 TOF-specific CMR abnormalities: right ventricular (RV) end-diastolic volume ≥ 160 mL/m2, RV end-systolic volume ≥ 80 mL/m2, RV ejection fraction (EF) <47%, and left ventricular EF <55%. Model discrimination, calibration, and net benefit as a screening test to rule out ventricular remodelling were assessed. Nine hundred and eight patients (2552 ECGs) were included in training, and 782 patients (1795 ECGs) in external validation (outcome prevalence 57%). The area under the receiver-operating curve (AUROC) was 0.85 (95% confidence interval 0.83–0.87), and average precision was 0.88. At a screening risk-threshold of 0.25, there was 92% sensitivity, 41% specificity, 87% negative predictive value, and 55% positive predictive value for ventricular remodelling, which yielded a 13% net reduction in CMR use on net benefit analysis. There was no difference by sex or race/ethnicity, but there were differences by age and site, with two of five sites with lower AUROC than the others, and three of five sites met criteria for miscalibration, which improved after centre-specific calibration.

Conclusion

An artificial intelligence analysis of electrocardiogram (AI-ECG) biomarker in repaired TOF effectively identifies ventricular remodelling to inform timing of advanced imaging. Extensive external validation revealed variation in discrimination and calibration that are important considerations for clinical implementation and regulatory approval pathways of AI-ECG in congenital heart disease.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました