AIが不確実性を表現し、健康モニタリング技術を向上させることを支援する研究者たち(Researchers Help AI Express Uncertainty to Improve Health Monitoring Tech)

ad

2023-04-17 ノースカロライナ州立大学(NCState)

電子機器が人間の咳を検出する能力を向上させるツールが開発された。これは、健康モニタリングなどの分野で利用される。新しいツールは、AIを使って現実世界の予期せぬデータに直面したときに不確実性をより正確に識別できるようにする。
これにより、従来の咳検出技術が”false positive”を多く報告する問題を解決することができ、より正確な検出が可能になる。また、より少ないサンプル数で機能するため、より小型かつエネルギー効率が向上する。利用の可能性はアレルギーやCOVID-19検出などにもある。

<関連情報>

分布外検出によるロバストな咳の検出 Robust Cough Detection with Out-of-Distribution Detection

Yuhan Chen,Pankaj Attri,Jeffrey Barahona,Michelle L. Hernandez,Delesha Carpenter,Alper Bozkurt,Edgar Lobaton
IEEE Journal of Biomedical and Health Informatics  Published:05 April 2023
DOI:https://doi.org/10.1109/JBHI.2023.3264783

Abstract

Cough is an important defense mechanism of the respiratory system and is also a symptom of lung diseases, such as asthma. Acoustic cough detection collected by portable recording devices is a convenient way to track potential condition worsening for patients who have asthma. However, the data used in building current cough detection models are often clean, containing a limited set of sound categories, and thus perform poorly when they are exposed to a variety of real-world sounds which could be picked up by portable recording devices. The sounds that are not learned by the model are referred to as Out-of-Distribution (OOD) data. In this work, we propose two robust cough detection methods combined with an OOD detection module, that removes OOD data without sacrificing the cough detection performance of the original system. These methods include adding a learning confidence parameter and maximizing entropy loss. Our experiments show that 1) the OOD system can produce dependable In-Distribution (ID) and OOD results at a sampling rate above 750 Hz; 2) the OOD sample detection tends to perform better for larger audio window sizes; 3) the model’s overall accuracy and precision get better as the proportion of OOD samples increase in the acoustic signals; 4) a higher percentage of OOD data is needed to realize performance gains at lower sampling rates. The incorporation of OOD detection techniques improves cough detection performance by a significant margin and provides a valuable solution to real-world acoustic cough detection problems.

医療・健康
ad
ad
Follow
ad
タイトルとURLをコピーしました